Show simple item record

dc.contributor.authorColding, Tobias
dc.contributor.authorMinicozzi, William
dc.date.accessioned2013-08-21T17:25:22Z
dc.date.available2013-08-21T17:25:22Z
dc.date.issued2013-02
dc.date.submitted2012-09
dc.identifier.issn0944-2669
dc.identifier.issn1432-0835
dc.identifier.urihttp://hdl.handle.net/1721.1/79897
dc.descriptionOriginal manuscript September 20, 2012en_US
dc.description.abstractIn this paper we generalize the monotonicity formulas of “Colding (Acta Math 209:229–263, 2012)” for manifolds with nonnegative Ricci curvature. Monotone quantities play a key role in analysis and geometry; see, e.g., “Almgren (Preprint)”, “Colding and Minicozzi II (PNAS, 2012)”, “Garofalo and Lin (Indiana Univ Math 35:245–267, 1986)” for applications of monotonicity to uniqueness. Among the applications here is that level sets of Green’s function on open manifolds with nonnegative Ricci curvature are asymptotically umbilic.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS 11040934)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS 1206827)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Focused Research Group (Grant DMS 0854774)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Focused Research Group (Grant DMS 0853501)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00526-013-0610-zen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleRicci curvature and monotonicity for harmonic functionsen_US
dc.typeArticleen_US
dc.identifier.citationColding, Tobias Holck, and William P. Minicozzi. “Ricci curvature and monotonicity for harmonic functions.” Calculus of Variations and Partial Differential Equations (February 26, 2013).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorColding, Tobiasen_US
dc.contributor.mitauthorMinicozzi, Williamen_US
dc.relation.journalCalculus of Variations and Partial Differential Equationsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsColding, Tobias Holck; Minicozzi, William P.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6208-384X
dc.identifier.orcidhttps://orcid.org/0000-0003-4211-6354
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record