Show simple item record

dc.contributor.authorColding, Tobias
dc.contributor.authorNaber, Aaron Charles
dc.date.accessioned2013-08-21T19:26:59Z
dc.date.available2013-08-21T19:26:59Z
dc.date.issued2013-01
dc.date.submitted2012-05
dc.identifier.issn1016-443X
dc.identifier.issn1420-8970
dc.identifier.urihttp://hdl.handle.net/1721.1/79907
dc.descriptionOriginal manuscript January 6, 2012en_US
dc.description.abstractConsider a limit space (M[subscript α],g[subscript α],p[subscript α]) [superscript GH over →] (Y, d[subscript Y], p), where the M[superscript n over α] have a lower Ricci curvature bound and are volume noncollapsed. The tangent cones of Y at a point p ∈ Y are known to be metric cones C(X), however they need not be unique. Let [superscript dash over Ω]Y,[subscript p] ⊆ M[subscript GH] be the closed subset of compact metric spaces X which arise as cross sections for the tangents cones of Y at p. In this paper we study the properties of [superscript dash over Ω]Y,[subscript p] . In particular, we give necessary and sufficient conditions for an open smooth family Ω ≡ (X, g[subscript s]) of closed manifolds to satisfy [superscript dash over Ω] = [superscript dash over Ω]Y,[subscript p] for some limit Y and point p ∈ Y as above, where [superscript dash over Ω] is the closure of Ω in the set of metric spaces equipped with the Gromov–Hausdorff topology. We use this characterization to construct examples which exhibit fundamentally new behaviors. The first application is to construct limit spaces (Y [superscript n], d Y, p) with n ≥ 3 such that at p there exists for every 0 ≤ k ≤ n − 2 a tangent cone at p of the form R[superscript k] × C(X[superscript n-k-1]), where X[superscript n-k-1] is a smooth manifold not isometric to the standard sphere. In particular, this is the first example which shows that a stratification of a limit space Y based on the Euclidean behavior of tangent cones is not possible or even well defined. It is also the first example of a three dimensional limit space with nonunique tangent cones. The second application is to construct a limit space (Y[superscript 5], d[subscript Y], p), such that at p the tangent cones are not only not unique, but not homeomorphic. Specifically, some tangent cones are homeomorphic to cones over CP[superscript 2]#[superscript dash over CP][superscript 2] while others are homeomorphic to cones over S[superscript 4].en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS 0606629)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS 1104392)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Focused Research Group (Grant DMS 0854774)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Postdoctoral Fellowship)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00039-012-0202-7en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleCharacterization of Tangent Cones of Noncollapsed Limits with Lower Ricci Bounds and Applicationsen_US
dc.typeArticleen_US
dc.identifier.citationColding, Tobias Holck, and Aaron Naber. “Characterization of Tangent Cones of Noncollapsed Limits with Lower Ricci Bounds and Applications.” Geometric and Functional Analysis 23, no. 1 (February 26, 2013): 134-148.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorColding, Tobiasen_US
dc.contributor.mitauthorNaber, Aaron Charlesen_US
dc.relation.journalGeometric and Functional Analysisen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsColding, Tobias Holck; Naber, Aaronen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6208-384X
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record