Show simple item record

dc.contributor.authorColding, Tobias
dc.date.accessioned2013-08-22T13:33:10Z
dc.date.available2013-08-22T13:33:10Z
dc.date.issued2012-12
dc.date.submitted2011-11
dc.identifier.issn0001-5962
dc.identifier.issn1871-2509
dc.identifier.urihttp://hdl.handle.net/1721.1/79912
dc.descriptionOriginal manuscript November 21, 2011en_US
dc.description.abstractWe prove three new monotonicity formulas for manifolds with a lower Ricci curvature bound and show that they are connected to rate of convergence to tangent cones. In fact, we show that the derivative of each of these three monotone quantities is bounded from below in terms of the Gromov–Hausdorff distance to the nearest cone. The monotonicity formulas are related to the classical Bishop–Gromov volume comparison theorem and Perelman’s celebrated monotonicity formula for the Ricci flow. We will explain the connection between all of these. Moreover, we show that these new monotonicity formulas are linked to a new sharp gradient estimate for the Green function that we prove. This is parallel to the fact that Perelman’s monotonicity is closely related to the sharp gradient estimate for the heat kernel of Li–Yau. In [CM4] one of the monotonicity formulas is used to show uniqueness of tangent cones with smooth cross-sections of Einstein manifolds. Finally, there are obvious parallelisms between our monotonicity and the positive mass theorem of Schoen–Yau and Witten.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-11040934)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Focused Research Group (Grant DMS 0854774)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 0932078)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s11511-012-0086-2en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleNew monotonicity formulas for Ricci curvature and applications; Ien_US
dc.title.alternativeNew monotonicity formulas for Ricci curvature and applications. Ien_US
dc.typeArticleen_US
dc.identifier.citationColding, Tobias Holck. “New monotonicity formulas for Ricci curvature and applications. I.” Acta Mathematica 209, no. 2 (December 6, 2012): 229-263.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorColding, Tobiasen_US
dc.relation.journalActa Mathematicaen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsColding, Tobias Holcken_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6208-384X
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record