MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Constitutive modeling of the Mullins effect and cyclic stress softening in filled elastomers

Author(s)
Dargazany, Roozbeh; Itskov, Mikhail
Thumbnail
DownloadDargazany-2013-Constitutive modeling of the Mullins effect and cyclic stress softening in filled elastomers.pdf (1.969Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The large strain behavior of filled rubbers is characterized by the strong Mullins effect, permanent set, and induced anisotropy. Strain controlled cyclic tests also exhibit a pronounced hysteresis as a strain rate independent phenomenon. Prediction of these inelastic features in elastomers is an important challenge with immense industrial and technological relevance. In the present paper, a micromechanical model is proposed to describe the inelastic features in the behavior of filled elastomers. To this end, the previously developed network decomposition concept [Dargazany and Itskov Int. J. Solids Struct. 46 2967 (2009)] is extended and an additional network (CP network) is added to the classical elastic rubber (CC) and polymer-filler (PP) networks. The new network is considered to account for the damage of filler aggregates in the cyclic deformation as the source of hysteresis energy loss. The accuracy of the resulting model is evaluated in comparison to a new set of experimental data.
Date issued
2013-07
URI
http://hdl.handle.net/1721.1/80274
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Physical Review E
Publisher
American Physical Society
Citation
Dargazany, Roozbeh, and Mikhail Itskov. “Constitutive modeling of the Mullins effect and cyclic stress softening in filled elastomers.” Physical Review E 88, no. 1 (July 2013). © 2013 American Physical Society
Version: Final published version
ISSN
1539-3755
1550-2376

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.