MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semiclassical spectral invariants for Schrodinger operators

Author(s)
Guillemin, Victor W.; Wang, Zuoqin
Thumbnail
DownloadGuillemin_Semiclassical spectral.pdf (284.6Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
In this article we show how to compute the semiclassical spectral measure associated with the Schrodinger operator on R[superscript n], and, by examining the first few terms in the asymptotic expansion of this measure, obtain inverse spectral results in one and two dimensions. (In particular we show that for the Schrodinger operator on R[superscript 2] with a radially symmetric electric potential, V, and magnetic potential, B, both V and B are spectrally determined.) We also show that in one dimension there is a very simple explicit identity relating the spectral measure of the Schrodinger operator with its Birkhoff canonical form.
Description
Original manuscript September 23, 2009
Date issued
2012-05
URI
http://hdl.handle.net/1721.1/80279
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of Differential Geometry
Publisher
International Press of Boston, Inc.
Citation
Guillemin, Victor, and Wang, Zuoqin. "Semiclassical Invariants for Schrodinger Operators." Journal of Differential Geometry 91.1 (2012): 103-128.
Version: Original manuscript
ISSN
0022-040X
1945-743X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.