MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Equivariant inverse spectral theory and toric orbifolds

Author(s)
Dryden, Emily B.; Sena-Dias, Rosa Isabel; Guillemin, Victor W.
Thumbnail
DownloadGuillemin_Equivariant inverse spectral.pdf (269.5Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Let O[superscript 2n] be a symplectic toric orbifold with a fixed T[superscript n]-action and with a toric Kähler metric g. In [10] we explored whether, when O is a manifold, the equivariant spectrum of the Laplace operator Δ[subscript g] on C[superscript ∞](O) determines O up to symplectomorphism. In the setting of toric orbifolds we significantly improve upon our previous results and show that a generic toric orbifold is determined by its equivariant spectrum, up to two possibilities. This involves developing the asymptotic expansion of the heat trace on an orbifold in the presence of an isometry. We also show that the equivariant spectrum determines whether the toric Kähler metric has constant scalar curvature.
Description
Original manuscript July 5, 2011
Date issued
2012-08
URI
http://hdl.handle.net/1721.1/80280
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Advances in Mathematics
Publisher
Elsevier
Citation
Dryden, Emily B., Victor Guillemin, and Rosa Sena-Dias. “Equivariant inverse spectral theory and toric orbifolds.” Advances in Mathematics 231, no. 3 4 (October 2012): 1271-1290.
Version: Original manuscript
ISSN
00018708
1090-2082

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.