Show simple item record

dc.contributor.authorCannas da Silva, A.
dc.contributor.authorGuillemin, Victor W.
dc.contributor.authorPissarra Pires, Ana Rita
dc.date.accessioned2013-08-26T21:08:27Z
dc.date.available2013-08-26T21:08:27Z
dc.date.issued2010-12
dc.date.submitted2010-09
dc.identifier.issn1073-7928
dc.identifier.issn1687-0247
dc.identifier.urihttp://hdl.handle.net/1721.1/80289
dc.descriptionAuthor's final manuscript February 21, 2011en_US
dc.description.abstractAn origami manifold is a manifold equipped with a closed 2-form which is symplectic except on a hypersurface, where it is like the pullback of a symplectic form by a folding map and its kernel fibrates with oriented circle fibers over a compact base. We can move back and forth between origami and symplectic manifolds using cutting (unfolding) and radial blow-up (folding), modulo compatibility conditions. We prove an origami convexity theorem for Hamiltonian torus actions, classify toric origami manifolds by polyhedral objects resembling paper origami and discuss examples. We also prove a cobordism result and compute the cohomology of a special class of origami manifolds.en_US
dc.language.isoen_US
dc.publisherOxford University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/imrn/rnq241en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleSymplectic Origamien_US
dc.typeArticleen_US
dc.identifier.citationCannas da Silva, A., V. Guillemin, and A. R. Pires. “Symplectic Origami.” International Mathematics Research Notices (December 2, 2010).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorGuillemin, Victor W.en_US
dc.contributor.mitauthorPissarra Pires, Ana Ritaen_US
dc.relation.journalInternational Mathematics Research Noticesen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCannas da Silva, A.; Guillemin, V.; Pires, A. R.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2641-1097
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record