dc.contributor.author | Cannas da Silva, A. | |
dc.contributor.author | Guillemin, Victor W. | |
dc.contributor.author | Pissarra Pires, Ana Rita | |
dc.date.accessioned | 2013-08-26T21:08:27Z | |
dc.date.available | 2013-08-26T21:08:27Z | |
dc.date.issued | 2010-12 | |
dc.date.submitted | 2010-09 | |
dc.identifier.issn | 1073-7928 | |
dc.identifier.issn | 1687-0247 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/80289 | |
dc.description | Author's final manuscript February 21, 2011 | en_US |
dc.description.abstract | An origami manifold is a manifold equipped with a closed 2-form which is symplectic except on a hypersurface, where it is like the pullback of a symplectic form by a folding map and its kernel fibrates with oriented circle fibers over a compact base. We can move back and forth between origami and symplectic manifolds using cutting (unfolding) and radial blow-up (folding), modulo compatibility conditions. We prove an origami convexity theorem for Hamiltonian torus actions, classify toric origami manifolds by polyhedral objects resembling paper origami and discuss examples. We also prove a cobordism result and compute the cohomology of a special class of origami manifolds. | en_US |
dc.language.iso | en_US | |
dc.publisher | Oxford University Press | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1093/imrn/rnq241 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Symplectic Origami | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Cannas da Silva, A., V. Guillemin, and A. R. Pires. “Symplectic Origami.” International Mathematics Research Notices (December 2, 2010). | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Guillemin, Victor W. | en_US |
dc.contributor.mitauthor | Pissarra Pires, Ana Rita | en_US |
dc.relation.journal | International Mathematics Research Notices | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Cannas da Silva, A.; Guillemin, V.; Pires, A. R. | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-2641-1097 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |