Transformation inverse design
Author(s)
Liu, David; Gabrielli, Lucas H.; Lipson, Michal; Johnson, Steven G.
DownloadJohnson_Transformation inverse design.pdf (4.241Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
We present a new technique for the design of transformation-optics devices based on large-scale optimization to achieve the optimal effective isotropic dielectric materials within prescribed index bounds, which is computationally cheap because transformation optics circumvents the need to solve Maxwell’s equations at each step. We apply this technique to the design of multimode waveguide bends (realized experimentally in a previous paper) and mode squeezers, in which all modes are transported equally without scattering. In addition to the optimization, a key point is the identification of the correct boundary conditions to ensure reflectionless coupling to untransformed regions while allowing maximum flexibility in the optimization. Many previous authors in transformation optics used a certain kind of quasiconformal map which overconstrained the problem by requiring that the entire boundary shape be specified a priori while at the same time underconstraining the problem by employing “slipping” boundary conditions that permit unwanted interface reflections.
Date issued
2013-06Department
Massachusetts Institute of Technology. Department of Mathematics; Massachusetts Institute of Technology. Department of PhysicsJournal
Optics Express
Publisher
Optical Society of America
Citation
Liu, David, Lucas H. Gabrielli, Michal Lipson, and Steven G. Johnson. “Transformation inverse design.” Optics Express 21, no. 12 (June 7, 2013): 14223. © 2013 OSA
Version: Final published version
ISSN
1094-4087