Show simple item record

dc.contributor.authorKedlaya, Kiran S.
dc.contributor.authorSutherland, Andrew Victor
dc.contributor.authorFite, Francesc
dc.contributor.authorRotger, Victor
dc.date.accessioned2013-09-06T17:03:27Z
dc.date.available2013-09-06T17:03:27Z
dc.date.issued2012-07
dc.date.submitted2011-11
dc.identifier.issn0010-437X
dc.identifier.issn1570-5846
dc.identifier.urihttp://hdl.handle.net/1721.1/80369
dc.description.abstractFor an abelian surface A over a number field k, we study the limiting distribution of the normalized Euler factors of the L-function of A. This distribution is expected to correspond to taking characteristic polynomials of a uniform random matrix in some closed subgroup of USp(4); this Sato–Tate group may be obtained from the Galois action on any Tate module of A. We show that the Sato–Tate group is limited to a particular list of 55 groups up to conjugacy. We then classify A according to the Galois module structure on the ℝ-algebra generated by endomorphisms of [superscript A][line over Q] (the Galois type), and establish a matching with the classification of Sato–Tate groups; this shows that there are at most 52 groups up to conjugacy which occur as Sato–Tate groups for suitable A and k, of which 34 can occur for k=ℚ. Finally, we present examples of Jacobians of hyperelliptic curves exhibiting each Galois type (over ℚ whenever possible), and observe numerical agreement with the expected Sato–Tate distribution by comparing moment statistics.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER Grant DMS-0545904)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1101343)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (Grant HR0011-09-1-0048)en_US
dc.description.sponsorshipNEC Research Support Funden_US
dc.description.sponsorshipIda M. Green Fellowshipen_US
dc.description.sponsorshipUniversity of California, San Diego (Warschawski Professorship)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1115455)en_US
dc.language.isoen_US
dc.publisherCambridge University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1112/s0010437x12000279en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceOther University Web Domainen_US
dc.titleSato–Tate distributions and Galois endomorphism modules in genus 2en_US
dc.typeArticleen_US
dc.identifier.citationFite, Francesc, Kiran S. Kedlaya, Victor Rotger, and Andrew V. Sutherland. “Sato–Tate distributions and Galois endomorphism modules in genus 2.” Compositio Mathematica 148, no. 05 (September 25, 2012): 1390-1442. © Foundation Compositio Mathematica 2012en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorKedlaya, Kiran S.en_US
dc.contributor.mitauthorSutherland, Andrew Victoren_US
dc.relation.journalCompositio Mathematicaen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsFité, Francesc; Kedlaya, Kiran S.; Rotger, Víctor; Sutherland, Andrew V.en_US
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record