Show simple item record

dc.contributor.authorMinnihan, Ellen Catherine
dc.contributor.authorAndo, Nozomi
dc.contributor.authorOlshansky, Lisa
dc.contributor.authorChittuluru, Johnathan
dc.contributor.authorAsturias, Francisco J.
dc.contributor.authorNocera, Daniel G.
dc.contributor.authorStubbe, JoAnne
dc.contributor.authorBrignole, Edward J
dc.contributor.authorDrennan, Catherine L
dc.date.accessioned2013-09-11T14:59:05Z
dc.date.available2013-09-11T14:59:05Z
dc.date.issued2013-02
dc.date.submitted2012-11
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/80387
dc.description.abstractRibonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates to deoxynucleoside diphosphates (dNDPs). The Escherichia coli class Ia RNR uses a mechanism of radical propagation by which a cysteine in the active site of the RNR large (α2) subunit is transiently oxidized by a stable tyrosyl radical (Y•) in the RNR small (β2) subunit over a 35-Å pathway of redox-active amino acids: Y[subscript 122]• ↔ [W[subscript 48]?] ↔ Y[subscript 356] in β2 to Y[subscript 731] ↔ Y[subscript 730] ↔ C[subscript 439] in α2. When 3-aminotyrosine (NH[subscript 2]Y) is incorporated in place of Y[subscript 730], a long-lived NH[subscript 2]Y[subscript 730]• is generated in α2 in the presence of wild-type (wt)-β2, substrate, and effector. This radical intermediate is chemically and kinetically competent to generate dNDPs. Herein, evidence is presented that NH[subscript 2]Y[subscript 730]• induces formation of a kinetically stable α2β2 complex. Under conditions that generate NH[subscript 2]Y[subscript 730]•, binding between Y[subscript 730]NH[subscript 2]Y-α2 and wt-β2 is 25-fold tighter (K[subscript d] = 7 nM) than for wt-α2|wt-β2 and is cooperative. Stopped-flow fluorescence experiments establish that the dissociation rate constant for the Y[subscript 730]NH[subscript 2]Y-α2|wt-β2 interaction is ~10[superscript 4]-fold slower than for the wt subunits (~60 s[superscript −1]). EM and small-angle X-ray scattering studies indicate that the stabilized species is a compact globular α2β2, consistent with the structure predicted by Uhlin and Eklund’s docking model [Uhlin U, Eklund H (1994) Nature 370(6490):533–539]. These results present a structural and biochemical characterization of the active RNR complex “trapped” during turnover, and suggest that stabilization of the α2β2 state may be a regulatory mechanism for protecting the catalytic radical and ensuring the fidelity of its reactivity.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 1122374)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant K99GM100008)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant F32GM90486)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant P30-ES002109)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant GM47274)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant GM29595)en_US
dc.language.isoen_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/pnas.1220691110en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePNASen_US
dc.titleGeneration of a stable, aminotyrosyl radical-induced α2β2 complex of Escherichia coli class Ia ribonucleotide reductaseen_US
dc.typeArticleen_US
dc.identifier.citationMinnihan, E. C., N. Ando, E. J. Brignole, L. Olshansky, J. Chittuluru, F. J. Asturias, C. L. Drennan, D. G. Nocera, and J. Stubbe. “Generation of a stable, aminotyrosyl radical-induced  2 2 complex of Escherichia coli class Ia ribonucleotide reductase.” Proceedings of the National Academy of Sciences 110, no. 10 (March 5, 2013): 3835-3840.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.mitauthorMinnihan, Ellen Catherineen_US
dc.contributor.mitauthorAndo, Nozomien_US
dc.contributor.mitauthorBrignole, Edward J.en_US
dc.contributor.mitauthorOlshansky, Lisaen_US
dc.contributor.mitauthorDrennan, Catherine L.en_US
dc.contributor.mitauthorNocera, Daniel G.en_US
dc.contributor.mitauthorStubbe, JoAnneen_US
dc.relation.journalProceedings of the National Academy of Sciencesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMinnihan, E. C.; Ando, N.; Brignole, E. J.; Olshansky, L.; Chittuluru, J.; Asturias, F. J.; Drennan, C. L.; Nocera, D. G.; Stubbe, J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5486-2755
dc.identifier.orcidhttps://orcid.org/0000-0002-0137-3234
dc.identifier.orcidhttps://orcid.org/0000-0001-8076-4489
dc.identifier.orcidhttps://orcid.org/0000-0002-4507-1115
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record