MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On uniqueness of tangent cones for Einstein manifolds

Author(s)
Colding, Tobias; Minicozzi, William
Thumbnail
DownloadColding_On uniqueness of tangent.pdf (495.7Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We show that for any Ricci-flat manifold with Euclidean volume growth the tangent cone at infinity is unique if one tangent cone has a smooth cross-section. Similarly, for any noncollapsing limit of Einstein manifolds with uniformly bounded Einstein constants, we show that local tangent cones are unique if one tangent cone has a smooth cross-section.
Date issued
2013-06
URI
http://hdl.handle.net/1721.1/80409
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Inventiones mathematicae
Publisher
Springer-Verlag
Citation
Colding, Tobias Holck, and William P. Minicozzi, II. “On uniqueness of tangent cones for Einstein manifolds.” Inventiones mathematicae (June 29, 2013).
Version: Original manuscript
ISSN
0020-9910
1432-1297

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.