dc.contributor.author | Dong, Wen | |
dc.contributor.author | Heller, Katherine | |
dc.contributor.author | Pentland, Alex Paul | |
dc.date.accessioned | 2013-09-12T18:07:20Z | |
dc.date.available | 2013-09-12T18:07:20Z | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-04 | |
dc.identifier.isbn | 978-3-642-29046-6 | |
dc.identifier.isbn | 978-3-642-29047-3 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/80416 | |
dc.description.abstract | Developing the ability to comprehensively study infections in small populations enables us to improve epidemic models and better advise individuals about potential risks to their health. We currently have a limited understanding of how infections spread within a small population because it has been difficult to closely track and infection within a complete community. This paper presents data closely tracking the spread of an infection centered on a student dormitory, collected by leveraging the residents’ use of cellular phones. This data is based on daily symptom surveys taken over a period of four months and proximity tracking through cellular phones. We demonstrate that using a Bayesian, discrete-time multi-agent model of infection to model the real-world symptom report and proximity tracking records can give us important insights about infections in small populations | en_US |
dc.language.iso | en_US | |
dc.publisher | Springer Berlin Heidelberg | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/978-3-642-29047-3_21 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | MIT Web Domain | en_US |
dc.title | Modeling Infection with Multi-agent Dynamics | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Dong, Wen, Katherine Heller, and Alex Pentland. “Modeling Infection with Multi-agent Dynamics.” Social Computing, Behavioral - Cultural Modeling and Prediction. Ed. Shanchieh Jay Yang, Ariel M. Greenberg, & Mica Endsley. Vol. 7227. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. 172–179. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Media Laboratory | en_US |
dc.contributor.mitauthor | Dong, Wen | en_US |
dc.contributor.mitauthor | Heller, Katherine | en_US |
dc.contributor.mitauthor | Pentland, Alex Paul | en_US |
dc.relation.journal | Social Computing, Behavioral - Cultural Modeling and Prediction | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Dong, Wen; Heller, Katherine; Pentland, Alex | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-8053-9983 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |