Show simple item record

dc.contributor.authorCheeger, Jeff
dc.contributor.authorHaslhofer, Robert
dc.contributor.authorNaber, Aaron Charles
dc.date.accessioned2013-09-13T12:28:37Z
dc.date.available2013-09-13T12:28:37Z
dc.date.issued2013-04
dc.date.submitted2012-07
dc.identifier.issn1016-443X
dc.identifier.issn1420-8970
dc.identifier.urihttp://hdl.handle.net/1721.1/80704
dc.descriptionOriginal manuscript October 29, 2012en_US
dc.description.abstractLet M be a Brakke flow of n-dimensional surfaces in R[superscript N]. The singular set S ⊂ M has a stratification S[superscript 0] ⊂ S[superscript 1] ⊂ ⋯ S, where X ∈ S[superscript j] if no tangent flow at X has more than j symmetries. Here, we define quantitative singular strata S[j over η,r] satisfying ∪[subscript η>0]∩[subscript 0<r]S[j over η,r] = S[superscript j]. Sharpening the known parabolic Hausdorff dimension bound dimS[superscript j] ≤ j, we prove the effective Minkowski estimates that the volume of r-tubular neighborhoods of S[j over η,r] satisfies Vol(T[subscript r](S[j over η,r]) ∩ B[subscript 1]) ≤ Cr[superscript N+2−j−ε]. Our primary application of this is to higher regularity of Brakke flows starting at k-convex smooth compact embedded hypersurfaces. To this end, we prove that for the flow of k-convex hypersurfaces, any backwards selfsimilar limit flow with at least k symmetries is in fact a static multiplicity one plane. Then, denoting by B[subscript r] ⊂ M the set of points with regularity scale less than r, we prove that Vol(T[subscript r](B[subscript r])) ≤ Cr[superscript n+4−k−ε]. This gives L[superscript p]-estimates for the second fundamental form for any p < n + 1 − k. In fact, the estimates are much stronger and give L[superscript p]-estimates for the reciprocal of the regularity scale. These estimates are sharp. The key technique that we develop and apply is a parabolic version of the quantitative stratification method introduced in Cheeger and Naber (Invent. Math., (2)191 2013), 321–339) and Cheeger and Naber (Comm. Pure. Appl. Math, arXiv:1107.3097v1, 2013).en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Postdoctoral Grant 0903137)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00039-013-0224-9en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleQuantitative Stratification and the Regularity of Mean Curvature Flowen_US
dc.typeArticleen_US
dc.identifier.citationCheeger, Jeff, Robert Haslhofer, and Aaron Naber. “Quantitative Stratification and the Regularity of Mean Curvature Flow.” Geometric and Functional Analysis 23, no. 3 (June 7, 2013): 828-847.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorNaber, Aaron Charlesen_US
dc.relation.journalGeometric and Functional Analysisen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsCheeger, Jeff; Haslhofer, Robert; Naber, Aaronen_US
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record