dc.contributor.author | Cheeger, Jeff | |
dc.contributor.author | Haslhofer, Robert | |
dc.contributor.author | Naber, Aaron Charles | |
dc.date.accessioned | 2013-09-13T12:28:37Z | |
dc.date.available | 2013-09-13T12:28:37Z | |
dc.date.issued | 2013-04 | |
dc.date.submitted | 2012-07 | |
dc.identifier.issn | 1016-443X | |
dc.identifier.issn | 1420-8970 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/80704 | |
dc.description | Original manuscript October 29, 2012 | en_US |
dc.description.abstract | Let M be a Brakke flow of n-dimensional surfaces in R[superscript N]. The singular set S ⊂ M has a stratification S[superscript 0] ⊂ S[superscript 1] ⊂ ⋯ S, where X ∈ S[superscript j] if no tangent flow at X has more than j symmetries. Here, we define quantitative singular strata S[j over η,r] satisfying ∪[subscript η>0]∩[subscript 0<r]S[j over η,r] = S[superscript j]. Sharpening the known parabolic Hausdorff dimension bound dimS[superscript j] ≤ j, we prove the effective Minkowski estimates that the volume of r-tubular neighborhoods of S[j over η,r] satisfies Vol(T[subscript r](S[j over η,r]) ∩ B[subscript 1]) ≤ Cr[superscript N+2−j−ε]. Our primary application of this is to higher regularity of Brakke flows starting at k-convex smooth compact embedded hypersurfaces. To this end, we prove that for the flow of k-convex hypersurfaces, any backwards selfsimilar limit flow with at least k symmetries is in fact a static multiplicity one plane. Then, denoting by B[subscript r] ⊂ M the set of points with regularity scale less than r, we prove that Vol(T[subscript r](B[subscript r])) ≤ Cr[superscript n+4−k−ε]. This gives L[superscript p]-estimates for the second fundamental form for any p < n + 1 − k. In fact, the estimates are much stronger and give L[superscript p]-estimates for the reciprocal of the regularity scale. These estimates are sharp. The key technique that we develop and apply is a parabolic version of the quantitative stratification method introduced in Cheeger and Naber (Invent. Math., (2)191 2013), 321–339) and Cheeger and Naber (Comm. Pure. Appl. Math, arXiv:1107.3097v1, 2013). | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Postdoctoral Grant 0903137) | en_US |
dc.language.iso | en_US | |
dc.publisher | Springer-Verlag | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s00039-013-0224-9 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Quantitative Stratification and the Regularity of Mean Curvature Flow | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Cheeger, Jeff, Robert Haslhofer, and Aaron Naber. “Quantitative Stratification and the Regularity of Mean Curvature Flow.” Geometric and Functional Analysis 23, no. 3 (June 7, 2013): 828-847. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Naber, Aaron Charles | en_US |
dc.relation.journal | Geometric and Functional Analysis | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Cheeger, Jeff; Haslhofer, Robert; Naber, Aaron | en_US |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |