dc.contributor.author | Pilawa-Podgurski, R. C. N. | |
dc.contributor.author | Chan, Walker R. | |
dc.contributor.author | Bermel, Peter A. | |
dc.contributor.author | Marton, Christopher Henry | |
dc.contributor.author | Jensen, Klavs F. | |
dc.contributor.author | Senkevich, Jay | |
dc.contributor.author | Joannopoulos, John D. | |
dc.contributor.author | Soljacic, Marin | |
dc.contributor.author | Celanovic, Ivan | |
dc.date.accessioned | 2013-09-13T14:29:16Z | |
dc.date.available | 2013-09-13T14:29:16Z | |
dc.date.issued | 2013-02 | |
dc.date.submitted | 2013-01 | |
dc.identifier.issn | 0027-8424 | |
dc.identifier.issn | 1091-6490 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/80714 | |
dc.description.abstract | The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system design, which we name the microthermophotovoltaic (μTPV) generator. The approach is predicted to be capable of up to 32% efficient heat-to-electricity conversion within a millimeter-scale form factor. Although considerable technological barriers need to be overcome to reach full performance, we have performed a robust experimental demonstration that validates the theoretical framework and the key system components. Even with a much-simplified μTPV system design with theoretical efficiency prediction of 2.7%, we experimentally demonstrate 2.5% efficiency. The μTPV experimental system that was built and tested comprises a silicon propane microcombustor, an integrated high-temperature photonic crystal selective thermal emitter, four 0.55-eV GaInAsSb thermophotovoltaic diodes, and an ultra-high-efficiency maximum power-point tracking power electronics converter. The system was demonstrated to operate up to 800 °C (silicon microcombustor temperature) with an input thermal power of 13.7 W, generating 344 mW of electric power over a 1-cm[superscript 2] area. | en_US |
dc.description.sponsorship | Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-07-D-0004) | en_US |
dc.description.sponsorship | nited States. Dept. of Energy. Office of Science (Solid-State Solar-Thermal Energy Conversion Center Grant DE-SC0001299) | en_US |
dc.language.iso | en_US | |
dc.publisher | National Academy of Sciences (U.S.) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1073/pnas.1301004110 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | PNAS | en_US |
dc.title | Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Chan, W. R., P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic. “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics.” Proceedings of the National Academy of Sciences 110, no. 14 (April 2, 2013): 5309-5314. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies | en_US |
dc.contributor.department | MIT Materials Research Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Chemical Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Physics | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Research Laboratory of Electronics | en_US |
dc.contributor.mitauthor | Chan, Walker R. | en_US |
dc.contributor.mitauthor | Bermel, Peter A. | en_US |
dc.contributor.mitauthor | Marton, Christopher Henry | en_US |
dc.contributor.mitauthor | Jensen, Klavs F. | en_US |
dc.contributor.mitauthor | Senkevich, Jay | en_US |
dc.contributor.mitauthor | Joannopoulos, John D. | en_US |
dc.contributor.mitauthor | Soljacic, Marin | en_US |
dc.contributor.mitauthor | Celanovic, Ivan | en_US |
dc.relation.journal | Proceedings of the National Academy of Sciences | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Chan, W. R.; Bermel, P.; Pilawa-Podgurski, R. C. N.; Marton, C. H.; Jensen, K. F.; Senkevich, J. J.; Joannopoulos, J. D.; Soljacic, M.; Celanovic, I. | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-7184-5831 | |
dc.identifier.orcid | https://orcid.org/0000-0002-7244-3682 | |
dc.identifier.orcid | https://orcid.org/0000-0001-7192-580X | |
dc.identifier.orcid | https://orcid.org/0000-0001-7232-4467 | |
dspace.mitauthor.error | true | |
mit.license | PUBLISHER_CC | en_US |
mit.metadata.status | Complete | |