MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Vector-valued optimal Lipschitz extensions

Author(s)
Sheffield, Scott Roger; Smart, Charles
Thumbnail
DownloadSheffield_Vector-valued optimal.pdf (564.0Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Consider a bounded open set U C R[superscript n] and a Lipschitz function g : aU → R[superscript m]. Does this function always have a canonical optimal Lipschitz extension to all of U? We propose a notion of optimal Lipschitz extension and address existence and uniqueness in some special cases. In the case n = m = 2, we show that smooth solutions have two phases: in one they are conformal and in the other they are variants of infinity harmonic functions called infinity harmonic fans. We also prove existence and uniqueness for the extension problem on finite graphs.
Description
Original manuscript June 9, 2010
Date issued
2011-09
URI
http://hdl.handle.net/1721.1/80732
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Communications on Pure and Applied Mathematics
Publisher
Wiley Blackwell
Citation
Sheffield, Scott, and Charles K. Smart. “Vector-valued optimal Lipschitz extensions.” Communications on Pure and Applied Mathematics 65, no. 1 (January 28, 2012): 128-154.
Version: Original manuscript
ISSN
00103640
1097-0312

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.