Show simple item record

dc.contributor.authorHoare, Todd
dc.contributor.authorTimko, Brian P.
dc.contributor.authorSantamaria, Jesus
dc.contributor.authorGoya, Gerardo F.
dc.contributor.authorIrusta, Silvia
dc.contributor.authorLau, Samantha
dc.contributor.authorStefanescu, Cristina F.
dc.contributor.authorLin, Debora
dc.contributor.authorKohane, Daniel S.
dc.contributor.authorLanger, Robert S
dc.date.accessioned2013-09-16T20:05:06Z
dc.date.available2013-09-16T20:05:06Z
dc.date.issued2011-02
dc.identifier.issn1530-6984
dc.identifier.issn1530-6992
dc.identifier.urihttp://hdl.handle.net/1721.1/80763
dc.descriptionAuthor Manuscript 2012 March 9.en_US
dc.description.abstractDrug delivery devices based on nanocomposite membranes containing thermoresponsive nanogels and superparamagnetic nanoparticles have been demonstrated to provide reversible, on−off drug release upon application (and removal) of an oscillating magnetic field. We show that the dose of drug delivered across the membrane can be tuned by engineering the phase transition temperature of the nanogel, the loading density of nanogels in the membrane, and the membrane thickness, allowing for on-state delivery of model drugs over at least 2 orders of magnitude (0.1−10 μg/h). The zero-order kinetics of drug release across the membranes permit drug doses from a specific device to be tuned according to the duration of the magnetic field. Drugs over a broad range of molecular weights (500−40000 Da) can be delivered by the same membrane device. Membrane-to-membrane and cycle-to-cycle reproducibility is demonstrated, suggesting the general utility of these membranes for drug delivery.en_US
dc.description.sponsorshipRuth L. Kirschstein National Research Service Awarden_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Award F32GM096546)en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/nl200494ten_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePMCen_US
dc.titleMagnetically Triggered Nanocomposite Membranes: A Versatile Platform for Triggered Drug Releaseen_US
dc.typeArticleen_US
dc.identifier.citationHoare, Todd, Brian P. Timko, Jesus Santamaria, Gerardo F. Goya, Silvia Irusta, Samantha Lau, Cristina F. Stefanescu, Debora Lin, Robert Langer, and Daniel S. Kohane. Magnetically Triggered Nanocomposite Membranes: A Versatile Platform for Triggered Drug Release. Nano Letters 11, no. 3 (March 9, 2011): 1395-1400.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorTimko, Brian P.en_US
dc.contributor.mitauthorLau, Samanthaen_US
dc.contributor.mitauthorLin, Deboraen_US
dc.contributor.mitauthorLanger, Roberten_US
dc.relation.journalNano Lettersen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHoare, Todd; Timko, Brian P.; Santamaria, Jesus; Goya, Gerardo F.; Irusta, Silvia; Lau, Samantha; Stefanescu, Cristina F.; Lin, Debora; Langer, Robert; Kohane, Daniel S.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7958-8980
dc.identifier.orcidhttps://orcid.org/0000-0003-4255-0492
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record