Show simple item record

dc.contributor.authorSternad, Dagmar
dc.contributor.authorMarino, Hamal
dc.contributor.authorCharles, Steven K.
dc.contributor.authorDuarte, Marcos
dc.contributor.authorDipietro, Laura
dc.contributor.authorHogan, Neville
dc.date.accessioned2013-09-18T13:31:37Z
dc.date.available2013-09-18T13:31:37Z
dc.date.issued2013-07
dc.date.submitted2013-03
dc.identifier.issn1662-5188
dc.identifier.urihttp://hdl.handle.net/1721.1/80784
dc.description.abstractGiven the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements in order to “stress” the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: starting at 2 s, the metronome intervals decreased by 36 ms per cycle to 200 ms, stayed at 200 ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01-HD045639)en_US
dc.description.sponsorshipAmerican Heart Association (11SDG7270001)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMS-0928587)en_US
dc.description.sponsorshipEric P. and Evelyn E. Newman Funden_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (Warrior Web program BAA-11-72)en_US
dc.language.isoen_US
dc.publisherFrontiers Research Foundationen_US
dc.relation.isversionofhttp://dx.doi.org/10.3389/fncom.2013.00090en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceFrontiers Research Foundationen_US
dc.titleTransitions between discrete and rhythmic primitives in a unimanual tasken_US
dc.typeArticleen_US
dc.identifier.citationSternad, Dagmar, Hamal Marino, Steven K. Charles, Marcos Duarte, Laura Dipietro, and Neville Hogan. “Transitions between discrete and rhythmic primitives in a unimanual task.” Frontiers in Computational Neuroscience 7 (2013).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorDipietro, Lauraen_US
dc.contributor.mitauthorHogan, Nevilleen_US
dc.contributor.mitauthorSternad, Dagmaren_US
dc.relation.journalFrontiers in Computational Neuroscienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSternad, Dagmar; Marino, Hamal; Charles, Steven K.; Duarte, Marcos; Dipietro, Laura; Hogan, Nevilleen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5366-2145
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record