Show simple item record

dc.contributor.authorFox, Emily Beth
dc.contributor.authorSudderth, Erik B.
dc.contributor.authorJordan, Michael I.
dc.contributor.authorWillsky, Alan S.
dc.date.accessioned2013-09-19T18:54:28Z
dc.date.available2013-09-19T18:54:28Z
dc.date.issued2011-01
dc.date.submitted2010-12
dc.identifier.issn1053-587X
dc.identifier.issn1941-0476
dc.identifier.urihttp://hdl.handle.net/1721.1/80811
dc.description.abstractMany complex dynamical phenomena can be effectively modeled by a system that switches among a set of conditionally linear dynamical modes. We consider two such models: the switching linear dynamical system (SLDS) and the switching vector autoregressive (VAR) process. Our Bayesian nonparametric approach utilizes a hierarchical Dirichlet process prior to learn an unknown number of persistent, smooth dynamical modes. We additionally employ automatic relevance determination to infer a sparse set of dynamic dependencies allowing us to learn SLDS with varying state dimension or switching VAR processes with varying autoregressive order. We develop a sampling algorithm that combines a truncated approximation to the Dirichlet process with efficient joint sampling of the mode and state sequences. The utility and flexibility of our model are demonstrated on synthetic data, sequences of dancing honey bees, the IBOVESPA stock index and a maneuvering target tracking application.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Grant FA9550-06-1-0324)en_US
dc.description.sponsorshipUnited States. Army Research Office (Grant W911NF-06-1-0076)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/tsp.2010.2102756en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceWillsky via Amy Stouten_US
dc.titleBayesian Nonparametric Inference of Switching Dynamic Linear Modelsen_US
dc.typeArticleen_US
dc.identifier.citationFox, Emily, Erik B. Sudderth, Michael I. Jordan, and Alan S. Willsky. Bayesian Nonparametric Inference of Switching Dynamic Linear Models. IEEE Transactions on Signal Processing 59, no. 4 (April 2011): 1569-1585.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorWillsky, Alan S.en_US
dc.relation.journalIEEE Transactions on Signal Processingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsFox, Emily; Sudderth, Erik B.; Jordan, Michael I.; Willsky, Alan S.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0149-5888
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record