MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS

Author(s)
Nahmod, Andrea; Oh, Tadahiro; Rey-Bellet, Luc; Staffilani, Gigliola
Thumbnail
DownloadStaffilani_Invariant weighted.pdf (548.8Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We construct an invariant weighted Wiener measure associated to the periodic derivative nonlinear Schrödinger equation in one dimension and establish global well-posedness for data living in its support. In particular almost surely for data in a Fourier–Lebesgue space FL[superscript s,r](\T) with s ≥ 1/2, 2 < r < 4, (s−1)r < −1 and scaling like H1/2[superscript −ϵ](T), for small ϵ>0. We also show the invariance of this measure.
Description
Original manuscript July 9, 2010
Date issued
2012
URI
http://hdl.handle.net/1721.1/80819
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of the European Mathematical Society
Publisher
European Mathematical Society Publishing House
Citation
Nahmod, Andrea, Tadahiro Oh, Luc Rey-Bellet, and Gigliola Staffilani. “Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS.” Journal of the European Mathematical Society (2012): 1275-1330.
Version: Original manuscript
ISSN
1435-9855
1435-9863

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.