| dc.contributor.author | Ionescu, Alexandru | |
| dc.contributor.author | Pausader, Benoit | |
| dc.contributor.author | Staffilani, Gigliola | |
| dc.date.accessioned | 2013-09-20T13:38:09Z | |
| dc.date.available | 2013-09-20T13:38:09Z | |
| dc.date.issued | 2012-11 | |
| dc.date.submitted | 2010-08 | |
| dc.identifier.issn | 1948-206X | |
| dc.identifier.issn | 2157-5045 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/80820 | |
| dc.description | Original manuscript September 8, 2010 | en_US |
| dc.description.abstract | In this paper we present a method to study global regularity properties of solutions of large-data critical Schrodinger equations on certain noncompact Riemannian manifolds. We rely on concentration compactness arguments and a global Morawetz inequality adapted to the geometry of the manifold (in other words we adapt the method of Kenig and Merle to the variable coefficient case), and a good understanding of the corresponding Euclidean problem (a theorem of Colliander, Keel, Staffilani, Takaoka and Tao). As an application we prove global well-posedness and scattering in H[superscript 1] for the energy-critical defocusing initial-value problem (i∂t + Δ[subscript g])u = u|u|[superscript 4], u(0) = ϕ, on hyperbolic space ℍ[superscript 3]. | en_US |
| dc.description.sponsorship | National Science Foundation (U.S.) (Grant DMS 0602678) | en_US |
| dc.language.iso | en_US | |
| dc.publisher | Mathematical Sciences Publishers | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.2140/apde.2012.5.705 | en_US |
| dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
| dc.source | arXiv | en_US |
| dc.title | On the global well-posedness of energy-critical Schrodinger equations in curved spaces | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Ionescu, Alexandru, Benoit Pausader, and Gigliola Staffilani. “On the global well-posedness of energy-critical Schrödinger equations in curved spaces.” Analysis & PDE 5, no. 4 (November 27, 2012): 705-746. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
| dc.contributor.mitauthor | Staffilani, Gigliola | en_US |
| dc.relation.journal | Analysis & PDE | en_US |
| dc.eprint.version | Original manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
| dspace.orderedauthors | Ionescu, Alexandru; Pausader, Benoit; Staffilani, Gigliola | en_US |
| dc.identifier.orcid | https://orcid.org/0000-0002-8220-4466 | |
| mit.license | OPEN_ACCESS_POLICY | en_US |
| mit.metadata.status | Complete | |