Show simple item record

dc.contributor.authorKirkpatrick, Kay
dc.contributor.authorLenzmann, Enno
dc.contributor.authorStaffilani, Gigliola
dc.date.accessioned2013-09-20T14:17:13Z
dc.date.available2013-09-20T14:17:13Z
dc.date.issued2012-11
dc.date.submitted2011-10
dc.identifier.issn0010-3616
dc.identifier.issn1432-0916
dc.identifier.urihttp://hdl.handle.net/1721.1/80823
dc.description.abstractWe consider a general class of discrete nonlinear Schrödinger equations (DNLS) on the lattice hZ with mesh size h > 0. In the continuum limit when h → 0, we prove that the limiting dynamics are given by a nonlinear Schrödinger equation (NLS) on R with the fractional Laplacian (−Δ)[superscript α] as dispersive symbol. In particular, we obtain that fractional powers 1/2 < α < 1 arise from long-range lattice interactions when passing to the continuum limit, whereas the NLS with the usual Laplacian −Δ describes the dispersion in the continuum limit for short-range or quick-decaying interactions (e. g., nearest-neighbor interactions). Our results rigorously justify certain NLS model equations with fractional Laplacians proposed in the physics literature. Moreover, the arguments given in our paper can be also applied to discuss the continuum limit for other lattice systems with long-range interactions.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1068815)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00220-012-1621-xen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleOn the Continuum Limit for Discrete NLS with Long-Range Lattice Interactionsen_US
dc.typeArticleen_US
dc.identifier.citationKirkpatrick, Kay, Enno Lenzmann, and Gigliola Staffilani. “On the Continuum Limit for Discrete NLS with Long-Range Lattice Interactions.” Communications in Mathematical Physics 317, no. 3 (February 17, 2013): 563-591.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorStaffilani, Gigliolaen_US
dc.relation.journalCommunications in Mathematical Physicsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsKirkpatrick, Kay; Lenzmann, Enno; Staffilani, Gigliolaen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8220-4466
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record