MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Overlap properties of geometric expanders

Author(s)
Fox, Jacob; Gromov, Mikhail; Lafforgue, Vincent; Naor, Assaf; Pach, Janos
Thumbnail
DownloadFox_Overlap properties.pdf (574.3Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
The overlap number of a finite (d + 1)-uniform hypergraph H is the largest constant c(H) ∈ (0, 1] such that no matter how we map the vertices of H into ℝ[superscript d], there is a point covered by at least a c(H)-fraction of the simplices induced by the images of its hyperedges. Motivated by the search for an analogue of the notion of graph expansion for higher dimensional simplicial complexes, we address the question whether or not there exists a sequence of arbitrarily large (d + 1)-uniform hypergraphs with bounded degree for which . Using both random methods and explicit constructions, we answer this question positively by constructing infinite families of (d + 1)-uniform hypergraphs with bounded degree such that their overlap numbers are bounded from below by a positive constant c = c(d). We also show that, for every d, the best value of the constant c = c(d) that can be achieved by such a construction is asymptotically equal to the limit of the overlap numbers of the complete (d + 1)-uniform hypergraphs with n vertices, as n → ∞. For the proof of the latter statement, we establish the following geometric partitioning result of independent interest. For any h, s and any ɛ > 0, there exists K = K(ɛ, h, s) satisfying the following condition. For any k ≧ K and for any semi-algebraic relation R on h-tuples of points in a Euclidean space ℝ[superscript d] with description complexity at most s, every finite set P ⫅ ℝ[superscript d] has a partition P = P[subscript 1] ∪ ⋯ ∪ P[subscript k] into k parts of sizes as equal as possible such that all but at most an ɛ-fraction of the h-tuples (P[subscript i1], … , P[subscript ih]) have the property that either all h-tuples of points with one element in each Pij are related with respect to R or none of them are.
Date issued
2011-11
URI
http://hdl.handle.net/1721.1/80829
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal für die reine und angewandte Mathematik (Crelles Journal)
Publisher
Walter de Gruyter
Citation
Fox, Jacob, Mikhail Gromov, Vincent Lafforgue, Assaf Naor, and Janos Pach. “Overlap properties of geometric expanders.” Journal für die reine und angewandte Mathematik (Crelles Journal) 2012, no. 671 (January 2012).
Version: Author's final manuscript
ISSN
1435-5345
0075-4102

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.