MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extensions and limits to vertex sparsification

Author(s)
Moitra, Ankur; Leighton, Frank Thomson
Thumbnail
DownloadLeighton_Extensions and limits.pdf (228.4Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Suppose we are given a graph G = (V, E) and a set of terminals K ⊂ V. We consider the problem of constructing a graph H = (K, E[subscript H]) that approximately preserves the congestion of every multicommodity flow with endpoints supported in K. We refer to such a graph as a flow sparsifier. We prove that there exist flow sparsifiers that simultaneously preserve the congestion of all multicommodity flows within an O(log k / log log k)-factor where |K| = k. This bound improves to O(1) if G excludes any fixed minor. This is a strengthening of previous results, which consider the problem of finding a graph H = (K, E[subscript H]) (a cut sparsifier) that approximately preserves the value of minimum cuts separating any partition of the terminals. Indirectly our result also allows us to give a construction for better quality cut sparsifiers (and flow sparsifiers). Thereby, we immediately improve all approximation ratios derived using vertex sparsification in [14]. We also prove an Ω(log log k) lower bound for how well a flow sparsifier can simultaneously approximate the congestion of every multicommodity flow in the original graph. The proof of this theorem relies on a technique (which we refer to as oblivious dual certifcates) for proving super-constant congestion lower bounds against many multicommodity flows at once. Our result implies that approximation algorithms for multicommodity flow-type problems designed by a black box reduction to a "uniform" case on k nodes (see [14] for examples) must incur a super-constant cost in the approximation ratio.
Date issued
2010-06
URI
http://hdl.handle.net/1721.1/80835
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Proceedings of the 42nd ACM symposium on Theory of computing (STOC '10)
Publisher
Association for Computing Machinery (ACM)
Citation
F. Thomson Leighton and Ankur Moitra. 2010. Extensions and limits to vertex sparsification. In Proceedings of the 42nd ACM symposium on Theory of computing (STOC '10). ACM, New York, NY, USA, 47-56.
Version: Author's final manuscript
ISBN
9781450300506

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.