Show simple item record

dc.contributor.authorStrobel, S.
dc.contributor.authorChen, L.
dc.contributor.authorDing, Y.
dc.contributor.authorWitharana, Sanjeeva
dc.contributor.authorMcKrell, Thomas J.
dc.contributor.authorChang, Jae-Byum
dc.contributor.authorBuongiorno, Jacopo
dc.contributor.authorPhillips, Bren Andrew
dc.contributor.authorKim, Hyungdae
dc.contributor.authorBerggren, Karl K
dc.date.accessioned2013-09-20T16:33:43Z
dc.date.available2013-09-20T16:33:43Z
dc.date.issued2012-09
dc.date.submitted2012-03
dc.identifier.issn00218979
dc.identifier.issn1089-7550
dc.identifier.urihttp://hdl.handle.net/1721.1/80838
dc.description.abstractRecently reported data suggest that bubble nucleation on surfaces with nano-sized features (cavities and posts) may occur close to the thermodynamic saturation temperature. However, according to the traditional theory of heterogeneous bubble nucleation, such low nucleation temperatures are possible only for surfaces with micro-scale cavities. Motivated by this apparent contradiction, we have used infrared thermometry to measure the nucleation temperature of water on custom-fabricated nano- to micro-scale cavities (from 90 nm to 4.5 μm in diameter) and posts (from 60 nm to 5 μm in diameter), machined on ultra-smooth and clean silicon wafers using electron beam lithography. Our cavity data are in agreement with the predictions of the Young-Laplace equation, thus re-affirming the correctness of the classic view of heterogeneous bubble nucleation, at least for the water-silicon system investigated here. The data also suggest that individual posts of any size have an insignificant effect on bubble nucleation, as expected from theory.en_US
dc.description.sponsorshipMIT Energy Initiative (Seed Fund Program)en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4752758en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleBubble nucleation on nano- to micro-size cavities and posts: An experimental validation of classical theoryen_US
dc.typeArticleen_US
dc.identifier.citationWitharana, S., B. Phillips, S. Strobel, H. D. Kim, T. McKrell, J.-B. Chang, J. Buongiorno, K. K. Berggren, L. Chen, and Y. Ding. “Bubble nucleation on nano- to micro-size cavities and posts: An experimental validation of classical theory.” Journal of Applied Physics 112, no. 6 (2012): 064904.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.mitauthorWitharana, Sanjeevaen_US
dc.contributor.mitauthorPhillips, B.en_US
dc.contributor.mitauthorStrobel, S.en_US
dc.contributor.mitauthorKim, H. D.en_US
dc.contributor.mitauthorMcKrell, Thomas J.en_US
dc.contributor.mitauthorChang, Jae-Byumen_US
dc.contributor.mitauthorBuongiorno, Jacopoen_US
dc.contributor.mitauthorBerggren, Karl K.en_US
dc.relation.journalJournal of Applied Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWitharana, S.; Phillips, B.; Strobel, S.; Kim, H. D.; McKrell, T.; Chang, J.-B.; Buongiorno, J.; Berggren, K. K.; Chen, L.; Ding, Y.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8115-5981
dc.identifier.orcidhttps://orcid.org/0000-0001-7453-9031
dc.identifier.orcidhttps://orcid.org/0000-0003-2055-4900
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record