MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Absolutely minimal Lipschitz extension of tree-valued mappings

Author(s)
Naor, Assaf; Sheffield, Scott Roger
Thumbnail
DownloadSheffield_Absolutely minimal.pdf (361.3Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We prove that every Lipschitz function from a subset of a locally compact length space to a metric tree has a unique absolutely minimal Lipschitz extension (AMLE). We relate these extensions to a stochastic game called Politics—a generalization of a game called Tug of War that has been used in Peres et al. (J Am Math Soc 22(1):167–210, 2009) to study real-valued AMLEs.
Date issued
2011-11
URI
http://hdl.handle.net/1721.1/80844
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Mathematische Annalen
Publisher
Springer-Verlag
Citation
Naor, Assaf, and Scott Sheffield. “Absolutely minimal Lipschitz extension of tree-valued mappings.” Mathematische Annalen 354, no. 3 (November 15, 2012): 1049-1078.
Version: Original manuscript
ISSN
0025-5831
1432-1807

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.