Show simple item record

dc.contributor.authorGoemans, Michel X.
dc.contributor.authorFleischer, Lisa
dc.contributor.authorMirrokni, Vahab
dc.contributor.authorSviridenko, Maxim
dc.date.accessioned2013-09-23T13:10:29Z
dc.date.available2013-09-23T13:10:29Z
dc.date.issued2011-08
dc.date.submitted2011-01
dc.identifier.issn0364-765X
dc.identifier.issn1526-5471
dc.identifier.urihttp://hdl.handle.net/1721.1/80849
dc.description.abstractA separable assignment problem (SAP) is defined by a set of bins and a set of items to pack in each bin; a value, f[subscript ij], for assigning item j to bin i; and a separate packing constraint for each bin—i.e., for each bin, a family of subsets of items that fit in to that bin. The goal is to pack items into bins to maximize the aggregate value. This class of problems includes the maximum generalized assignment problem (GAP)[superscript 1] and a distributed caching problem (DCP) described in this paper. Given a β-approximation algorithm for finding the highest value packing of a single bin, we give i. A polynomial-time LP-rounding based ((1 − 1/e)β)-approximation algorithm. ii. A simple polynomial-time local search (β/(β + 1) − ε)-approximation algorithm, for any ε > 0. Therefore, for all examples of SAP that admit an approximation scheme for the single-bin problem, we obtain an LP-based algorithm with (1 − 1/e − ε)-approximation and a local search algorithm with (½ - ε)-approximation guarantee. Furthermore, for cases in which the subproblem admits a fully polynomial approximation scheme (such as for GAP), the LP-based algorithm analysis can be strengthened to give a guarantee of 1 − 1/e. The best previously known approximation algorithm for GAP is a ½-approximation by Shmoys and Tardos and Chekuri and Khanna. Our LP algorithm is based on rounding a new linear programming relaxation, with a provably better integrality gap. To complement these results, we show that SAP and DCP cannot be approximated within a factor better than 1 − 1/e unless NP ⊆ DTIME(n[superscript O(log log n)]), even if there exists a polynomial-time exact algorithm for the single-bin problem. We extend the (1 − 1/e)-approximation algorithm to a constant-factor approximation algorithms for a nonseparable assignment problem with applications in maximizing revenue for budget-constrained combinatorial auctions and the AdWords assignment problem. We generalize the local search algorithm to yield a ½ - ε approximation algorithm for the maximum k-median problem with hard capacities.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Contract CCF-0728869)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Contract CCF-0829878)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-11-1-0053)en_US
dc.language.isoen_US
dc.publisherInstitute for Operations Research and the Management Sciences (INFORMS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1287/moor.1110.0499en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleTight Approximation Algorithms for Maximum Separable Assignment Problemsen_US
dc.typeArticleen_US
dc.identifier.citationFleischer, L., M. X. Goemans, V. S. Mirrokni, and M. Sviridenko. “Tight Approximation Algorithms for Maximum Separable Assignment Problems.” Mathematics of Operations Research 36, no. 3 (August 15, 2011): 416-431.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorGoemans, Michel X.en_US
dc.relation.journalMathematics of Operations Researchen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsFleischer, L.; Goemans, M. X.; Mirrokni, V. S.; Sviridenko, M.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0520-1165
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record