dc.contributor.author | Bezrukavnikov, Roman | |
dc.contributor.author | Lin, Qian | |
dc.date.accessioned | 2013-09-23T13:23:52Z | |
dc.date.available | 2013-09-23T13:23:52Z | |
dc.date.issued | 2012 | |
dc.date.submitted | 2010-08 | |
dc.identifier.isbn | 9780821853177 | |
dc.identifier.isbn | 9780821885369 | |
dc.identifier.issn | 1098-3627 | |
dc.identifier.issn | 0271-4132 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/80850 | |
dc.description.abstract | In the article by Bezrukavnikov and Mirkovic a certain non-commutative algebra A was defined starting from a semi-simple algebraic group, so that the derived category of A-modules is equivalent to the derived category of coherent sheaves on the Springer (or Grothendieck-Springer) resolution.
Let gˇ be the Langlands dual Lie algebra and let [˄ over g] be the corresponding affine Lie algebra, i.e. [˄ over g] is a central extension of gˇ ⊗ C((t)).
Using results of Frenkel and Gaitsgory we show that the category of [˄ over g] modules at the critical level which are Iwahori integrable and have a fixed central character, is equivalent to the category of modules over a central reduction of A. This implies that numerics of Iwahori integrable modules at the critical level is governed by the canonical basis in the K-group of a Springer fiber, which was conjecturally described by Lusztig and constructed by Bezrukavnikov and Mirkovic. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant DMS-0854764) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant DMS-1102434) | en_US |
dc.language.iso | en_US | |
dc.publisher | American Mathematical Society | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1090/conm/565/11188 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Highest weight modules at the critical level and noncommutative Springer resolution | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Bezrukavnikov, Roman, and Qian Lin. Highest weight modules at the critical level and noncommutative Springer resolution. American Mathematical Society, 2012. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Bezrukavnikov, Roman | en_US |
dc.contributor.mitauthor | Lin, Qian | en_US |
dc.relation.journal | Algebraic Groups and Quantum Groups | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Bezrukavnikov, Roman; Lin, Qian | en_US |
dc.identifier.orcid | https://orcid.org/0000-0001-5902-8989 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |