Show simple item record

dc.contributor.authorBezrukavnikov, Roman
dc.contributor.authorLin, Qian
dc.date.accessioned2013-09-23T13:23:52Z
dc.date.available2013-09-23T13:23:52Z
dc.date.issued2012
dc.date.submitted2010-08
dc.identifier.isbn9780821853177
dc.identifier.isbn9780821885369
dc.identifier.issn1098-3627
dc.identifier.issn0271-4132
dc.identifier.urihttp://hdl.handle.net/1721.1/80850
dc.description.abstractIn the article by Bezrukavnikov and Mirkovic a certain non-commutative algebra A was defined starting from a semi-simple algebraic group, so that the derived category of A-modules is equivalent to the derived category of coherent sheaves on the Springer (or Grothendieck-Springer) resolution. Let gˇ be the Langlands dual Lie algebra and let [˄ over g] be the corresponding affine Lie algebra, i.e. [˄ over g] is a central extension of gˇ ⊗ C((t)). Using results of Frenkel and Gaitsgory we show that the category of [˄ over g] modules at the critical level which are Iwahori integrable and have a fixed central character, is equivalent to the category of modules over a central reduction of A. This implies that numerics of Iwahori integrable modules at the critical level is governed by the canonical basis in the K-group of a Springer fiber, which was conjecturally described by Lusztig and constructed by Bezrukavnikov and Mirkovic.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0854764)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1102434)en_US
dc.language.isoen_US
dc.publisherAmerican Mathematical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1090/conm/565/11188en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleHighest weight modules at the critical level and noncommutative Springer resolutionen_US
dc.typeArticleen_US
dc.identifier.citationBezrukavnikov, Roman, and Qian Lin. Highest weight modules at the critical level and noncommutative Springer resolution. American Mathematical Society, 2012.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorBezrukavnikov, Romanen_US
dc.contributor.mitauthorLin, Qianen_US
dc.relation.journalAlgebraic Groups and Quantum Groupsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBezrukavnikov, Roman; Lin, Qianen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5902-8989
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record