Show simple item record

dc.contributor.authorDryden, Emily B.
dc.contributor.authorGuillemin, Victor W.
dc.contributor.authorSena-Dias, Rosa Isabel
dc.date.accessioned2013-09-23T15:24:28Z
dc.date.available2013-09-23T15:24:28Z
dc.date.issued2011-10
dc.date.submitted2010-06
dc.identifier.issn0002-9947
dc.identifier.issn1088-6850
dc.identifier.urihttp://hdl.handle.net/1721.1/80861
dc.descriptionAuthor's final manuscript June 18, 2012en_US
dc.description.abstractLet M[superscript 2n] be a symplectic toric manifold with a fixed T[superscript n]-action and with a toric Kähler metric g. Abreu (2003) asked whether the spectrum of the Laplace operator Δ[subscript g] on C∞ (M) determines the moment polytope of M, and hence by Delzant's theorem determines M up to symplectomorphism. We report on some progress made on an equivariant version of this conjecture. If the moment polygon of M[superscript 4] is generic and does not have too many pairs of parallel sides, the so-called equivariant spectrum of M and the spectrum of its associated real manifold M[subscript R] determine its polygon, up to translation and a small number of choices. For M of arbitrary even dimension and with integer cohomology class, the equivariant spectrum of the Laplacian acting on sections of a naturally associated line bundle determines the moment polytope of M.en_US
dc.language.isoen_US
dc.publisherAmerican Mathematical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1090/s0002-9947-2011-05412-7en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleHearing Delzant polytopes from the equivariant spectrumen_US
dc.typeArticleen_US
dc.identifier.citationDryden, Emily B., Victor Guillemin, and Rosa Sena-Dias. “Hearing Delzant polytopes from the equivariant spectrum.” Transactions of the American Mathematical Society 364, no. 2 (February 1, 2012): 887-910.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorGuillemin, Victor W.en_US
dc.contributor.mitauthorSena-Dias, Rosa Isabelen_US
dc.relation.journalTransactions of the American Mathematical Societyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsDryden, Emily B.; Guillemin, Victor; Sena-Dias, Rosaen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2641-1097
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record