dc.contributor.author | Dryden, Emily B. | |
dc.contributor.author | Guillemin, Victor W. | |
dc.contributor.author | Sena-Dias, Rosa Isabel | |
dc.date.accessioned | 2013-09-23T15:24:28Z | |
dc.date.available | 2013-09-23T15:24:28Z | |
dc.date.issued | 2011-10 | |
dc.date.submitted | 2010-06 | |
dc.identifier.issn | 0002-9947 | |
dc.identifier.issn | 1088-6850 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/80861 | |
dc.description | Author's final manuscript June 18, 2012 | en_US |
dc.description.abstract | Let M[superscript 2n] be a symplectic toric manifold with a fixed T[superscript n]-action and with a toric Kähler metric g. Abreu (2003) asked whether the spectrum of the Laplace operator Δ[subscript g] on C∞ (M) determines the moment polytope of M, and hence by Delzant's theorem determines M up to symplectomorphism. We report on some progress made on an equivariant version of this conjecture. If the moment polygon of M[superscript 4] is generic and does not have too many pairs of parallel sides, the so-called equivariant spectrum of M and the spectrum of its associated real manifold M[subscript R] determine its polygon, up to translation and a small number of choices. For M of arbitrary even dimension and with integer cohomology class, the equivariant spectrum of the Laplacian acting on sections of a naturally associated line bundle determines the moment polytope of M. | en_US |
dc.language.iso | en_US | |
dc.publisher | American Mathematical Society | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1090/s0002-9947-2011-05412-7 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Hearing Delzant polytopes from the equivariant spectrum | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Dryden, Emily B., Victor Guillemin, and Rosa Sena-Dias. “Hearing Delzant polytopes from the equivariant spectrum.” Transactions of the American Mathematical Society 364, no. 2 (February 1, 2012): 887-910. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Guillemin, Victor W. | en_US |
dc.contributor.mitauthor | Sena-Dias, Rosa Isabel | en_US |
dc.relation.journal | Transactions of the American Mathematical Society | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Dryden, Emily B.; Guillemin, Victor; Sena-Dias, Rosa | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-2641-1097 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |