Mars atmospheric CO[subscript 2] condensation above the north and south poles as revealed by radio occultation, climate sounder, and laser ranging observations
Author(s)
Hu, Renyu; Cahoy, Kerri; Zuber, Maria
DownloadCahoy_Mars atmospheric.pdf (6.619Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
[1] We study the condensation of CO[subscript 2] in Mars' atmosphere using temperature profiles retrieved from radio occultation measurements from Mars Global Surveyor (MGS) as well as the climate sounding instrument onboard the Mars Reconnaissance Orbiter (MRO), and detection of reflective clouds by the MGS Mars Orbiter Laser Altimeter (MOLA). We find 11 events in 1999 where MGS temperature profiles indicate CO[subscript 2] condensation and MOLA simultaneously detects reflective clouds. We thus provide causal evidence that MOLA non-ground returns are associated with CO[subscript 2] condensation, which strongly indicates their nature being CO[subscript 2] clouds. The MGS and MRO temperature profiles together reveal the seasonal expansion and shrinking of the area and the vertical extent of atmospheric saturation. The occurrence rate of atmospheric saturation is maximized at high latitudes in the middle of winter. The atmospheric saturation in the northern polar region exhibits more intense seasonal variation than in the southern polar region. In particular, a shrinking of saturation area and thickness from L[subscript S] ∼ 270° to ∼300° in 2007 is found; this is probably related to a planet-encircling dust storm. Furthermore, we integrate the condensation area and the condensation occurrence rate to estimate cumulative masses of CO[subscript 2] condensates deposited onto the northern and southern seasonal polar caps. The precipitation flux is approximated by the particle settling flux which is estimated using the impulse responses of MOLA filter channels. With our approach, the total atmospheric condensation mass can be estimated from these observational data sets with average particle size as the only free parameter. By comparison with the seasonal polar cap masses inferred from the time-varying gravity of Mars, our estimates indicate that the average condensate particle radius is 8–22 μm in the northern hemisphere and 4–13 μm in the southern hemisphere. Our multi-instrument data analysis provides new constraints on modeling the global climate of Mars.
Date issued
2012-07Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary SciencesJournal
Journal of Geophysical Research
Publisher
American Geophysical Union (AGU)
Citation
Hu, Renyu, Kerri Cahoy, and Maria T. Zuber. “Mars Atmospheric CO 2 Condensation Above the North and South Poles as Revealed by Radio Occultation, Climate Sounder, and Laser Ranging Observations.” Journal of Geophysical Research 117.E7 (2012). ©2012. American Geophysical Union
Version: Final published version
ISSN
0148-0227