MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Clutchable Series-Elastic Actuator: Design of a Robotic Knee Prosthesis for Minimum Energy Consumption

Author(s)
Rouse, Elliott Jay; Mooney, Luke M.; Martinez-Villalpando, Ernesto C.; Herr, Hugh M.
Thumbnail
DownloadHerr_Clutchable series-elastic.pdf (261.1Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
The cyclic and often linear torque-angle relationship of locomotion presents the opportunity to innovate on the design of traditional series-elastic actuators (SEAs). In this paper, a novel modification to the SEA architecture was proposed by adding a clutch in parallel with the motor within the SEA—denoted as a CSEA. This addition permits bimodal dynamics where the system is characterized by an SEA when the clutch is disengaged and a passive spring when the clutch is engaged. The purpose of the parallel clutch was to provide the ability to store energy in a tuned series spring, while requiring only reactionary torque from the clutch. Thus, when the clutch is engaged, a tuned elastic relationship can be achieved with minimal electrical energy consumption. The state-based model of the CSEA is introduced and the implementation of the CSEA mechanism in a powered knee prosthesis is detailed. The series elasticity was optimized to fit the spring-like torqueangle relationship of early stance phase knee flexion and extension during level ground walking. In simulation, the CSEA knee required 70% less electrical energy than a traditional SEA. Future work will focus on the mechanical implementation of the CSEA knee and an empirical demonstration of reduced electrical energy consumption during walking.
Date issued
2013-06
URI
http://hdl.handle.net/1721.1/81164
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Media Laboratory
Journal
13th International Conference on Rehabilitation Robotics, ICORR 2013
Citation
Rouse, Elliott Jay; Mooney, Luke M.; Martinez-Villalpando, Ernesto C.; Herr, Hugh M. "Clutchable Series-Elastic Actuator: Design of a Robotic Knee Prosthesis for Minimum Energy Consumption". 13th International Conference on Rehabilitation Robotics, ICORR 2013.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.