Show simple item record

dc.contributor.authorMcDuff, Daniel Jonathan
dc.contributor.authorDemirdjian, David
dc.contributor.authorPicard, Rosalind W.
dc.contributor.authorEl Kaliouby, Rana
dc.date.accessioned2013-09-26T14:41:46Z
dc.date.available2013-09-26T14:41:46Z
dc.date.issued2013-04
dc.identifier.isbn9781467355445
dc.identifier.isbn9781467355452
dc.identifier.urihttp://hdl.handle.net/1721.1/81192
dc.description.abstractWe present an automated method for classifying “liking” and “desire to view again” based on over 1,500 facial responses to media collected over the Internet. This is a very challenging pattern recognition problem that involves robust detection of smile intensities in uncontrolled settings and classification of naturalistic and spontaneous temporal data with large individual differences. We examine the manifold of responses and analyze the false positives and false negatives that result from classification. The results demonstrate the possibility for an ecologically valid, unobtrusive, evaluation of commercial “liking” and “desire to view again”, strong predictors of marketing success, based only on facial responses. The area under the curve for the best “liking” and “desire to view again” classifiers was 0.8 and 0.78 respectively when using a challenging leave-one-commercial-out testing regime. The technique could be employed in personalizing video ads that are presented to people whilst they view programming over the Internet or in copy testing of ads to unobtrusively quantify effectiveness.en_US
dc.description.sponsorshipMIT Media Lab Consortiumen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp//dx.doi.org/10.1109/FG.2013.6553750en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT Web Domainen_US
dc.titlePredicting Online Media Effectiveness Based on Smile Responses Gathered Over the Interneten_US
dc.typeArticleen_US
dc.identifier.citationMcDuff, Daniel et al. “Predicting Online Media Effectiveness Based on Smile Responses Gathered over the Internet.” IEEE, 2013. 1–7.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)en_US
dc.contributor.mitauthorMcDuff, Daniel Jonathanen_US
dc.contributor.mitauthorel Kaliouby, Ranaen_US
dc.contributor.mitauthorDemirdjian, Daviden_US
dc.contributor.mitauthorPicard, Rosalind W.en_US
dc.relation.journalProceedings of the 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG 2013)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsMcDuff, Daniel Jonathan; el Kaliouby, Rana; Demirdjian, David; Picard, Rosalind W.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5661-0022
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record