MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the computational complexity of MCMC-based estimators in large samples

Author(s)
Belloni, Alexandre; Chernozhukov, Victor V.
Thumbnail
DownloadBelloni-2009-ON THE COMPUTATIONAL COMPLEXITY OF MCMC-BASED.pdf (400.0Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In this paper we examine the implications of the statistical large sample theory for the computational complexity of Bayesian and quasi-Bayesian estimation carried out using Metropolis random walks. Our analysis is motivated by the Laplace–Bernstein–Von Mises central limit theorem, which states that in large samples the posterior or quasi-posterior approaches a normal density. Using the conditions required for the central limit theorem to hold, we establish polynomial bounds on the computational complexity of general Metropolis random walks methods in large samples. Our analysis covers cases where the underlying log-likelihood or extremum criterion function is possibly nonconcave, discontinuous, and with increasing parameter dimension. However, the central limit theorem restricts the deviations from continuity and log-concavity of the log-likelihood or extremum criterion function in a very specific manner. Under minimal assumptions required for the central limit theorem to hold under the increasing parameter dimension, we show that the Metropolis algorithm is theoretically efficient even for the canonical Gaussian walk which is studied in detail. Specifically, we show that the running time of the algorithm in large samples is bounded in probability by a polynomial in the parameter dimension d and, in particular, is of stochastic order d2 in the leading cases after the burn-in period. We then give applications to exponential families, curved exponential families and Z-estimation of increasing dimension.
Date issued
2009-08
URI
http://hdl.handle.net/1721.1/81193
Department
Massachusetts Institute of Technology. Department of Economics
Journal
Annals of Statistics
Publisher
Institute of Mathematical Statistics
Citation
Belloni, Alexandre, and Victor Chernozhukov. “On the computational complexity of MCMC-based estimators in large samples.” The Annals of Statistics 37, no. 4 (August 2009): 2011-2055. © 2009 Institute of Mathematical Statistics.
Version: Final published version
ISSN
0090-5364

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.