MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rheology and microstructural evolution in pressure-driven flow of a magnetorheological fluid with strong particle-wall interactions

Author(s)
Ocalan, Murat; McKinley, Gareth H
Thumbnail
DownloadMcKinley_Rheology and microstructural.pdf (2.385Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
The interaction between magnetorheological (MR) fluid particles and the walls of the device that retain the field-responsive fluid is critical as this interaction provides the means for coupling the physical device to the field-controllable properties of the fluid. This interaction is often enhanced in actuators by the use of ferromagnetic walls that generate an attractive force on the particles in the field-on state. In this article, the aggregation dynamics of MR fluid particles and the evolution of the microstructure in pressure-driven flow through ferromagnetic channels are studied using custom-fabricated microfluidic devices with ferromagnetic sidewalls. The aggregation of the particles and the time-dependent evolution in the microstructure is studied in rectilinear, expansion and contraction channel geometries. These observations help identify methods for improving MR actuator design and performance.
Date issued
2012-01
URI
http://hdl.handle.net/1721.1/81209
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Hatsopoulos Microfluids Laboratory
Journal
Journal of Intelligent Material Systems and Structures
Publisher
Sage Publications
Citation
Ocalan, M., and G. H. McKinley. Rheology and Microstructural Evolution in Pressure-driven Flow of a Magnetorheological Fluid with Strong Particle-wall Interactions. Journal of Intelligent Material Systems and Structures 23, no. 9 (June 20, 2012): 969-978.
Version: Author's final manuscript
ISSN
1045-389X
1530-8138

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.