MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bragg resonance of waves in a two-layer fluid propagating over bottom ripples. Part II. Numerical simulation

Author(s)
Alam, Mohammad-Reza; Liu, Yuming; Yue, Dick K. P.
Thumbnail
DownloadYue_BraggII.pdf (1.064Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We develop a direct numerical method to study the general problem of nonlinear interactions of surface/interfacial waves with variable bottom topography in a two-layer density stratified fluid. We extend a powerful high-order spectral (HOS) method for nonlinear gravity wave dynamics in a homogeneous fluid to the case of a two-layer fluid over non-uniform bottom. The method is capable of capturing the nonlinear interactions among large number of surface/interfacial wave mode and bottom ripple components up to an arbitrary high order. The method preserves exponential convergence with respect to the number of modes of the original HOS and the (approximately) linear effort with respect to mode number and interaction order. The method is validated through systematic convergence tests and comparison to a semi-analytic solution we obtain for an exact nonlinear Stokes waves on a two-layer fluid (in uniform depth). We apply the numerical method to the three classes of generalized Bragg resonances studied in Alam, Liu & Yue (J. Fluid Mech., vol. 624, 2009, p. 225), and compare the perturbation predictions obtained there with the direct simulation results. An important finding is possibly the important effect of even higher-order nonlinear interactions not accounted for in the leading-order perturbation analyses. To illustrate the efficacy of the numerical method to the general problem, we consider a somewhat more complicated case involving two incident waves and three bottom ripple components with wavenumbers that lead to the possibility of multiple Bragg resonances. It is shown that the ensuing multiple (near) resonant interactions result in the generation of multiple new transmitted/reflected waves that fill a broad wavenumber band eventually leading to the loss of order and chaotic motion.
Date issued
2009-03
URI
http://hdl.handle.net/1721.1/81269
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. School of Engineering
Journal
Journal of Fluid Mechanics
Publisher
Cambridge University Press
Citation
ALAM, MOHAMMAD-REZA, YUMING LIU, and DICK K. P. YUE. Bragg Resonance of Waves in a Two-layer Fluid Propagating over Bottom Ripples. Part II. Numerical Simulation. Journal of Fluid Mechanics 624 (April 30, 2009): 225.
Version: Final published version
ISSN
0022-1120
1469-7645

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.