Show simple item record

dc.contributor.authorNikolaidis, Stefanos
dc.contributor.authorShah, Julie A.
dc.date.accessioned2013-10-02T21:57:35Z
dc.date.available2013-10-02T21:57:35Z
dc.date.issued2013-03
dc.identifier.isbn978-1-4673-3101-2
dc.identifier.isbn978-1-4673-3099-2
dc.identifier.isbn978-1-4673-3100-5
dc.identifier.issn2167-2121
dc.identifier.issn2167-2148
dc.identifier.otherINSPEC Accession Number: 13399442
dc.identifier.urihttp://hdl.handle.net/1721.1/81277
dc.description.abstractWe design and evaluate human-robot cross-training, a strategy widely used and validated for effective human team training. Cross-training is an interactive planning method in which a human and a robot iteratively switch roles to learn a shared plan for a collaborative task. We first present a computational formulation of the robot's interrole knowledge and show that it is quantitatively comparable to the human mental model. Based on this encoding, we formulate human-robot cross-training and evaluate it in human subject experiments (n = 36). We compare human-robot cross-training to standard reinforcement learning techniques, and show that cross-training provides statistically significant improvements in quantitative team performance measures. Additionally, significant differences emerge in the perceived robot performance and human trust. These results support the hypothesis that effective and fluent human-robot teaming may be best achieved by modeling effective practices for human teamwork.en_US
dc.description.sponsorshipABB Inc.en_US
dc.description.sponsorshipU.S. Commercial Regional Centeren_US
dc.description.sponsorshipAlexander S. Onassis Public Benefit Foundationen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/HRI.2013.6483499en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleHuman-robot cross-training: Computational formulation, modeling and evaluation of a human team training strategyen_US
dc.typeArticleen_US
dc.identifier.citationNikolaidis, Stefanos, and Julie Shah. “Human-robot cross-training: Computational formulation, modeling and evaluation of a human team training strategy.” In 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 33-40. Institute of Electrical and Electronics Engineers, 2013.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorNikolaidis, Stefanosen_US
dc.contributor.mitauthorShah, Julie A.en_US
dc.relation.journal2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsNikolaidis, Stefanos; Shah, Julieen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1338-8107
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record