MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles

Author(s)
Langer, Robert; Kamaly, Nazila; Fredman, Gabrielle; Subramanian, Manikandan; Gadde, Suresh; Pesic, Alexsandar; Cheung, Louis; Fayad, Zahi A.; Tabas, Ira; Cameron Farokhzad, Omid; ... Show more Show less
Thumbnail
DownloadKamaly-2013-Development and In Vivo Efficacy of Targeted Polymeric Inflammation-Resolving Nanoparticles.pdf (956.1Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Excessive inflammation and failed resolution of the inflammatory response are underlying components of numerous conditions such as arthritis, cardiovascular disease, and cancer. Hence, therapeutics that dampen inflammation and enhance resolution are of considerable interest. In this study, we demonstrate the proresolving activity of sub–100-nm nanoparticles (NPs) containing the anti-inflammatory peptide Ac2-26, an annexin A1/lipocortin 1-mimetic peptide. These NPs were engineered using biodegradable diblock poly(lactic-co-glycolic acid)-b-polyethyleneglycol and poly(lactic-co-glycolic acid)-b-polyethyleneglycol collagen IV–targeted polymers. Using a self-limited zymosan-induced peritonitis model, we show that the Ac2-26 NPs (100 ng per mouse) were significantly more potent than Ac2-26 native peptide at limiting recruitment of polymononuclear neutrophils (56% vs. 30%) and at decreasing the resolution interval up to 4 h. Moreover, systemic administration of collagen IV targeted Ac2-26 NPs (in as low as 1 µg peptide per mouse) was shown to significantly block tissue damage in hind-limb ischemia-reperfusion injury by up to 30% in comparison with controls. Together, these findings demonstrate that Ac2-26 NPs are proresolving in vivo and raise the prospect of their use in chronic inflammatory diseases such as atherosclerosis.
Date issued
2013-03
URI
http://hdl.handle.net/1721.1/81300
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Proceedings of the National Academy of Sciences
Publisher
National Academy of Sciences (U.S.)
Citation
Kamaly, N., G. Fredman, M. Subramanian, S. Gadde, A. Pesic, L. Cheung, Z. A. Fayad, R. Langer, I. Tabas, and O. Cameron Farokhzad. “Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles.” Proceedings of the National Academy of Sciences 110, no. 16 (April 16, 2013): 6506-6511.
Version: Final published version
ISSN
0027-8424
1091-6490

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.