Show simple item record

dc.contributor.authorDragoi, George
dc.date.accessioned2013-10-04T16:03:31Z
dc.date.available2013-10-04T16:03:31Z
dc.date.issued2013-08
dc.date.submitted2013-03
dc.identifier.issn1662-5137
dc.identifier.urihttp://hdl.handle.net/1721.1/81317
dc.description.abstractMost of our cognitive life depends on our brain's ability to generate internal representations of the external world. The hippocampus is a brain structure that supports the formation of internal representations of the spatial environment (O'Keefe and Nadel, 1978) as well as the formation (Scoville and Milner, 1957) and consolidation (Squire and Alvarez, 1995) of episodic memories. In rodents, hippocampal pyramidal cells are active at discrete places along the trajectory of the animal in linear and two-dimensional spatial environments, and therefore are called place cells (O'Keefe and Dostrovsky, 1971). During exploratory behavior, the firing rates of individual place cells are thought to encode the moment-to-moment location of the animal in space (O'Keefe and Dostrovsky, 1971; Wilson and McNaughton, 1993). With reference to the background local field potential theta oscillation (~8 Hz), individual place cells oscillate at slightly faster frequency (~10 Hz) and fire at more advanced theta phases the further the animal travels through the cell's place field, a phenomenon called phase precession (O'Keefe and Recce, 1993; Skaggs et al., 1996; Huxter et al., 2008). Since most place cells go through almost a full 360° cycle of precession from the beginning to the end of their place field (O'Keefe and Recce, 1993), the theta phase of firing is thought to encode the distance of the animal relative to the beginning of the place field (Huxter et al., 2003).en_US
dc.language.isoen_US
dc.publisherFrontiers Research Foundationen_US
dc.relation.isversionofhttp://dx.doi.org/10.3389/fnsys.2013.00046en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceFrontiers Research Foundationen_US
dc.titleInternal operations in the hippocampus: single cell and ensemble temporal codingen_US
dc.typeArticleen_US
dc.identifier.citationDragoi, George. “Internal operations in the hippocampus: single cell and ensemble temporal coding.” Frontiers in Systems Neuroscience 7 (2013).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentPicower Institute for Learning and Memoryen_US
dc.contributor.departmentRIKEN-MIT Center for Neural Circuit Geneticsen_US
dc.contributor.mitauthorDragoi, Georgeen_US
dc.relation.journalFrontiers in Systems Neuroscienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsDragoi, Georgeen_US
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record