Genome-wide single-cell-level screen for protein abundance and localization changes in response to DNA damage in S. cerevisiae
Author(s)
Mazumder, Aprotim; Bathe, Mark; Samson, Leona D.; Pesudo Quiros, Laia; McRee, Siobhan K.
DownloadMazumder-2013-Genome-wide single-c.pdf (8.325Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
An effective response to DNA damaging agents involves modulating numerous facets of cellular homeostasis in addition to DNA repair and cell-cycle checkpoint pathways. Fluorescence microscopy-based imaging offers the opportunity to simultaneously interrogate changes in both protein level and subcellular localization in response to DNA damaging agents at the single-cell level. We report here results from screening the yeast Green Fluorescent Protein (GFP)-fusion library to investigate global cellular protein reorganization on exposure to the alkylating agent methyl methanesulfonate (MMS). Broad groups of induced, repressed, nucleus- and cytoplasm-enriched proteins were identified. Gene Ontology and interactome analyses revealed the underlying cellular processes. Transcription factor (TF) analysis identified principal regulators of the response, and targets of all major stress-responsive TFs were enriched amongst the induced proteins. An unexpected partitioning of biological function according to the number of TFs targeting individual genes was revealed. Finally, differential modulation of ribosomal proteins depending on methyl methanesulfonate dose was shown to correlate with cell growth and with the translocation of the Sfp1 TF. We conclude that cellular responses can navigate different routes according to the extent of damage, relying on both expression and localization changes of specific proteins.
Date issued
2013-08Department
Massachusetts Institute of Technology. Center for Environmental Health Sciences; Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Biology; Massachusetts Institute of Technology. Laboratory for Computational Cell Biology & Biophysics; Koch Institute for Integrative Cancer Research at MITJournal
Nucleic Acids Research
Publisher
Oxford University Press
Citation
Mazumder, A., L. Q. Pesudo, S. McRee, M. Bathe, and L. D. Samson. “Genome-wide single-cell-level screen for protein abundance and localization changes in response to DNA damage in S. cerevisiae.” Nucleic Acids Research (August 9, 2013).
Version: Final published version
ISSN
0305-1048
1362-4962