Lagrangian coherent structures separate dynamically distinct regions in fluid flows
Author(s)
Kelley, Douglas H.; Allshouse, Michael R.; Ouellette, Nicholas T.
DownloadKelley_Lagrangian-coherent.pdf (5.551Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Using filter-space techniques, we study the scale-to-scale transport of energy in a quasi-two-dimensional, weakly turbulent fluid flow averaged along the trajectories of fluid elements. We find that although the spatial mean of this Lagrangian-averaged flux is nearly unchanged from its Eulerian counterpart, the spatial structure of the scale-to-scale energy flux changes significantly. In particular, its features appear to correlate with the positions of Lagrangian coherent structures (LCS's). We show that the LCS's tend to lie at zeros of the scale-to-scale flux, and therefore that the LCS's separate regions that have qualitatively different dynamics. Since LCS's are also known to be impenetrable barriers to advection and mixing, we therefore find that the fluid on either side of an LCS is both kinematically and dynamically distinct. Our results extend the utility of LCS's by making clear the role they play in the flow dynamics in addition to the kinematics.
Date issued
2013-07Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
Physical Review E
Publisher
American Physical Society
Citation
Kelley, Douglas H., Michael R. Allshouse, and Nicholas T. Ouellette. “Lagrangian Coherent Structures Separate Dynamically Distinct Regions in Fluid Flows.” Physical Review E 88.1 (2013). © 2013 American Physical Society
Version: Final published version
ISSN
1539-3755
1550-2376