MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimentally efficient methods for estimating the performance of quantum measurements

Author(s)
Magesan, Easwar; Cappellaro, Paola
Thumbnail
DownloadMagesan_Experimentally-efficient.pdf (263.7Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Efficient methods for characterizing the performance of quantum measurements are important in the experimental quantum sciences. Ideally, one requires both a physically relevant distinguishability measure between measurement operations and a well-defined experimental procedure for estimating the distinguishability measure. Here, we propose the average measurement fidelity and error between quantum measurements as distinguishability measures. We present protocols for obtaining bounds on these quantities that are both estimable using experimentally accessible quantities and scalable in the size of the quantum system. We also explain why the bounds should be valid in large generality and illustrate the method via numerical examples.
Date issued
2013-08
URI
http://hdl.handle.net/1721.1/81395
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Physical Review A
Publisher
American Physical Society
Citation
Magesan, Easwar, and Paola Cappellaro. “Experimentally efficient methods for estimating the performance of quantum measurements.” Physical Review A 88, no. 2 (August 2013). © 2013 American Physical Society
Version: Final published version
ISSN
1050-2947
1094-1622

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.