MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fracture compliance estimation using borehole tube waves

Author(s)
Bakku, Sudhish Kumar; Fehler, Michael; Burns, Daniel R.
Thumbnail
DownloadBakku_Fracture-compliance-estimation.pdf (841.6Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We tested two models, one for tube-wave generation and the other for tube-wave attenuation at a fracture intersecting a borehole that can be used to estimate fracture compliance, fracture aperture, and lateral extent. In the tube-wave generation model, we consider tube-wave excitation in the borehole when a P-wave is incident on the fracture. The amplitude ratio of the pressure due to the tube wave to that of the incident P-wave is a function of fracture compliance, aperture, and length. Similarly, the attenuation of a tube wave in the borehole as it crosses a fracture intersecting the borehole is also a function of fracture properties. Numerically solving the dispersion relation in the fracture, we study tube-wave generation and the attenuation coefficient as a function of frequency. We observed that measuring amplitude ratios or attenuation near a transition frequency can help constrain the fracture properties. The transition frequency corresponds to the regime in which the viscous skin depth in the fracture is comparable to its aperture. Measurements in the high-frequency limit can place a lower bound on fracture compliance and lateral extent. We evaluated the applicability of the tube-wave generation model to a previously published VSP data set and found that compliance values of the order 10[superscript −10]–10[superscript −9]  m/Pa are likely in the field. These observations support scaling of fracture compliance with fracture size.
Date issued
2013-06
URI
http://hdl.handle.net/1721.1/81403
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences; Massachusetts Institute of Technology. Earth Resources Laboratory
Journal
Geophysics
Publisher
Society of Exploration Geophysicists
Citation
Bakku, Sudhish Kumar, Michael Fehler, and Daniel Burns. “Fracture compliance estimation using borehole tube waves.” GEOPHYSICS 78, no. 4 (June 24, 2013): D249-D260. © 2013 Society of Exploration Geophysicists
Version: Final published version
ISSN
0016-8033
1942-2156

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.