MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Probabilistic Feasibility for Nonlinear Systems with Non-Gaussian Uncertainty using RRT

Author(s)
Luders, Brandon Douglas; How, Jonathan P.
Thumbnail
DownloadHow_Probabilistic feasibility.pdf (1.260Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
For motion planning problems involving many or unbounded forms of uncertainty, it may not be possible to identify a path guaranteed to be feasible, requiring consideration of the trade-o between planner conservatism and the risk of infeasibility. Recent work developed the chance constrained rapidly-exploring random tree (CC-RRT) algorithm, a real-time planning algorithm which can e ciently compute risk at each timestep in order to guarantee probabilistic feasibility. However, the results in that paper require the dual assumptions of a linear system and Gaussian uncertainty, two assumptions which are often not applicable to many real-life path planning scenarios. This paper presents several extensions to the CC-RRT framework which allow these assumptions to be relaxed. For nonlinear systems subject to Gaussian process noise, state distributions can be approximated as Gaussian by considering a linearization of the dynamics at each timestep; simulation results demonstrate the e ective of this approach for both open-loop and closed-loop dynamics. For systems subject to non-Gaussian uncertainty, we propose a particle-based representation of the uncertainty, and thus the state distributions; as the number of particles increases, the particles approach the true uncertainty. A key aspect of this approach relative to previous work is the consideration of probabilistic bounds on constraint satisfaction, both at every timestep and over the duration of entire paths.
Date issued
2011-03
URI
http://hdl.handle.net/1721.1/81417
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Infotech@Aerospace 2011
Publisher
American Institute of Aeronautics and Astronautics
Citation
Luders, Brandon, and Jonathan How. “Probabilistic Feasibility for Nonlinear Systems with Non-Gaussian Uncertainty using RRT.” In Infotech@Aerospace 2011, 29 - 31 March 2011, St. Louis, Missouri, American Institute of Aeronautics and Astronautics, 2011.
Version: Author's final manuscript
Other identifiers
AIAA 2011-1589
ISBN
978-1-60086-944-0

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.