Show simple item record

dc.contributor.authorSpidlen, Josef
dc.contributor.authorBarsky, Aaron
dc.contributor.authorBreuer, Karin
dc.contributor.authorCarr, Peter
dc.contributor.authorNazaire, Marc-Danie
dc.contributor.authorHill, Barbara
dc.contributor.authorQian, Yu
dc.contributor.authorLiefeld, Ted
dc.contributor.authorReich, Michael
dc.contributor.authorWilkinson, Peter
dc.contributor.authorScheuermann, Richard H.
dc.contributor.authorSekaly, Rafick-Pierre
dc.contributor.authorBrinkman, Ryan R.
dc.contributor.authorMesirov, Jill P.
dc.date.accessioned2013-10-21T12:37:33Z
dc.date.available2013-10-21T12:37:33Z
dc.date.issued2013-07
dc.date.submitted2013-01
dc.identifier.issn1751-0473
dc.identifier.urihttp://hdl.handle.net/1721.1/81441
dc.description.abstractBackground: Traditional flow cytometry data analysis is largely based on interactive and time consuming analysis of series two dimensional representations of up to 20 dimensional data. Recent technological advances have increased the amount of data generated by the technology and outpaced the development of data analysis approaches. While there are advanced tools available, including many R/BioConductor packages, these are only accessible programmatically and therefore out of reach for most experimentalists. GenePattern is a powerful genomic analysis platform with over 200 tools for analysis of gene expression, proteomics, and other data. A web-based interface provides easy access to these tools and allows the creation of automated analysis pipelines enabling reproducible research. Results: In order to bring advanced flow cytometry data analysis tools to experimentalists without programmatic skills, we developed the GenePattern Flow Cytometry Suite. It contains 34 open source GenePattern flow cytometry modules covering methods from basic processing of flow cytometry standard (i.e., FCS) files to advanced algorithms for automated identification of cell populations, normalization and quality assessment. Internally, these modules leverage from functionality developed in R/BioConductor. Using the GenePattern web-based interface, they can be connected to build analytical pipelines. Conclusions: GenePattern Flow Cytometry Suite brings advanced flow cytometry data analysis capabilities to users with minimal computer skills. Functionality previously available only to skilled bioinformaticians is now easily accessible from a web browser.en_US
dc.publisherBioMed Central Ltden_US
dc.relation.isversionofhttp://dx.doi.org/10.1186/1751-0473-8-14en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.0en_US
dc.sourceBioMed Central Ltden_US
dc.titleGenePattern flow cytometry suiteen_US
dc.typeArticleen_US
dc.identifier.citationSpidlen, Josef et al. “GenePattern Flow Cytometry Suite.” Source Code for Biology and Medicine 8.1 (2013): 14.en_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorMesirov, Jill P.en_US
dc.relation.journalSource Code for Biology and Medicineen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2013-10-17T07:55:15Z
dc.language.rfc3066en
dc.rights.holderJosef Spidlen et al.; licensee BioMed Central Ltd.
dspace.orderedauthorsSpidlen, Josef; Barsky, Aaron; Breuer, Karin; Carr, Peter; Nazaire, Marc-Danie; Hill, Barbara; Qian, Yu; Liefeld, Ted; Reich, Michael; Mesirov, Jill P; Wilkinson, Peter; Scheuermann, Richard H; Sekaly, Rafick-Pierre; Brinkman, Ryan Ren_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record