MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Controlled mobility in stochastic and dynamic wireless networks

Author(s)
Modiano, Eytan H.; Celik, Guner Dincer
Thumbnail
DownloadModiano_Controlled mobility.pdf (320.2Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We consider the use of controlled mobility in wireless networks where messages arriving randomly in time and space are collected by mobile receivers (collectors). The collectors are responsible for receiving these messages via wireless transmission by dynamically adjusting their position in the network. Our goal is to utilize a combination of wireless transmission and controlled mobility to improve the throughput and delay performance in such networks. First, we consider a system with a single collector. We show that the necessary and sufficient stability condition for such a system is given by ρ<1 where ρ is the expected system load. We derive lower bounds for the expected message waiting time in the system and develop policies that are stable for all loads ρ<1 and have asymptotically optimal delay scaling. We show that the combination of mobility and wireless transmission results in a delay scaling of Θ([1 over 1−ρ]) with the system load ρ, in contrast to the Θ([1 over (1−ρ)[superscript 2]]) delay scaling in the corresponding system without wireless transmission, where the collector visits each message location. Next, we consider the system with multiple collectors. In the case where simultaneous transmissions to different collectors do not interfere with each other, we show that both the stability condition and the delay scaling extend from the single collector case. In the case where simultaneous transmissions to different collectors interfere with each other, we characterize the stability region of the system and show that a frame-based version of the well-known Max-Weight policy stabilizes the system asymptotically in the frame length.
Date issued
2012-05
URI
http://hdl.handle.net/1721.1/81444
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Queueing Systems
Publisher
Springer-Verlag
Citation
Çelik, Güner D., and Eytan H. Modiano. “Controlled Mobility in Stochastic and Dynamic Wireless Networks.” Queueing Systems 72.3-4 (2012): 251–277.
Version: Author's final manuscript
ISSN
0257-0130
1572-9443

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.