Show simple item record

dc.contributor.authorBullo, Francesco
dc.contributor.authorPavone, M.
dc.contributor.authorSmith, S. L.
dc.contributor.authorFrazzoli, Emilio
dc.contributor.authorSavla, Ketan D.
dc.date.accessioned2013-10-21T16:14:45Z
dc.date.available2013-10-21T16:14:45Z
dc.date.issued2011-09
dc.date.submitted2011-02
dc.identifier.issn0018-9219
dc.identifier.issn1558-2256
dc.identifier.urihttp://hdl.handle.net/1721.1/81456
dc.description.abstractRecent years have witnessed great advancements in the science and technology of autonomy, robotics, and networking. This paper surveys recent concepts and algorithms for dynamic vehicle routing (DVR), that is, for the automatic planning of optimal multivehicle routes to perform tasks that are generated over time by an exogenous process. We consider a rich variety of scenarios relevant for robotic applications. We begin by reviewing the basic DVR problem: demands for service arrive at random locations at random times and a vehicle travels to provide on-site service while minimizing the expected wait time of the demands. Next, we treat different multivehicle scenarios based on different models for demands (e.g., demands with different priority levels and impatient demands), vehicles (e.g., motion constraints, communication, and sensing capabilities), and tasks. The performance criterion used in these scenarios is either the expected wait time of the demands or the fraction of demands serviced successfully. In each specific DVR scenario, we adopt a rigorous technical approach that relies upon methods from queueing theory, combinatorial optimization, and stochastic geometry. First, we establish fundamental limits on the achievable performance, including limits on stability and quality of service. Second, we design algorithms, and provide provable guarantees on their performance with respect to the fundamental limits.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Award FA 8650-07-2-3744)en_US
dc.description.sponsorshipUnited States. Army Research Office. Multidisciplinary University Research Initiative (Award W911NF-05-1-0219)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award ECCS-0705451)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award CMMI-0705453)en_US
dc.description.sponsorshipUnited States. Army Research Office (Award W911NF-11-1-0092)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/jproc.2011.2158181en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT Web domainen_US
dc.titleDynamic Vehicle Routing for Robotic Systemsen_US
dc.typeArticleen_US
dc.identifier.citationBullo, F., E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith. “Dynamic Vehicle Routing for Robotic Systems.” Proceedings of the IEEE 99, no. 9 (September 2011): 1482-1504.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.mitauthorFrazzoli, Emilioen_US
dc.contributor.mitauthorSavla, Ketan D.en_US
dc.relation.journalProceedings of the IEEEen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsBullo, F.; Frazzoli, E.; Pavone, M.; Savla, K.; Smith, S. L.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0505-1400
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record