Show simple item record

dc.contributor.authorRedding, Joshua
dc.contributor.authorBethke, Brett M.
dc.contributor.authorBertuccelli, Luca F.
dc.contributor.authorHow, Jonathan P.
dc.date.accessioned2013-10-23T15:08:12Z
dc.date.available2013-10-23T15:08:12Z
dc.date.issued2009-04
dc.identifier.isbn978-1-60086-979-2
dc.identifier.issn1946-9802
dc.identifier.urihttp://hdl.handle.net/1721.1/81479
dc.description.abstractThe performance of many complex UAV decision-making problems can be extremely sensitive to small errors in the model parameters. One way of mitigating this sensitivity is by designing algorithms that more effectively learn the model throughout the course of a mission. This paper addresses this important problem by considering model uncertainty in a multi-agent Markov Decision Process (MDP) and using an active learning approach to quickly learn transition model parameters. We build on previous research that allowed UAVs to passively update model parameter estimates by incorporating new state transition observations. In this work, however, the UAVs choose to actively reduce the uncertainty in their model parameters by taking exploratory and informative actions. These actions result in a faster adaptation and, by explicitly accounting for UAV fuel dynamics, also mitigates the risk of the exploration. This paper compares the nominal, passive learning approach against two methods for incorporating active learning into the MDP framework: (1) All state transitions are rewarded equally, and (2) State transition rewards are weighted according to the expected resulting reduction in the variance of the model parameter. In both cases, agent behaviors emerge that enable faster convergence of the uncertain model parameters to their true values.en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Aeronautics and Astronauticsen_US
dc.relation.isversionofhttp://dx.doi.org/10.2514/6.2009-1981en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleActive Learning in Persistent Surveillance UAV Missionsen_US
dc.typeArticleen_US
dc.identifier.citationRedding, Joshua, Brett Bethke, Luca Bertuccelli, and Jonathan How. “Active Learning in Persistent Surveillance UAV Missions.” In AIAA Infotech@Aerospace Conference and AIAA Unmanned...Unlimited Conference. American Institute of Aeronautics and Astronautics, 2009.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Aerospace Controls Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorHow, Jonathan P.en_US
dc.contributor.mitauthorRedding, Joshuaen_US
dc.contributor.mitauthorBethke, Brett M.en_US
dc.contributor.mitauthorBertuccelli, Luca F.en_US
dc.relation.journalProceedings of the AIAA Infotech@Aerospace Conference and AIAA Unmanned...Unlimited Conferenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsRedding, Joshua; Bethke, Brett; Bertuccelli, Luca; How, Jonathanen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8576-1930
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record