Show simple item record

dc.contributor.authorMeneghini, Orso-Maria Cornelio
dc.contributor.authorLau, C.
dc.contributor.authorMa, Y.
dc.contributor.authorHarvey, R. W.
dc.contributor.authorSchmidt, A. E.
dc.contributor.authorSmirnov, A. P.
dc.contributor.authorWilson, J. R.
dc.contributor.authorWallace, Gregory Marriner
dc.contributor.authorFaust, Ian Charles
dc.contributor.authorParker, Ronald R.
dc.contributor.authorShiraiwa, Shunichi
dc.contributor.authorBaek, Seung Gyou
dc.contributor.authorBonoli, Paul T.
dc.contributor.authorHubbard, Amanda E.
dc.contributor.authorHughes, Jerry W.
dc.contributor.authorLabombard, Brian
dc.contributor.authorReinke, Matthew Logan
dc.contributor.authorTerry, James L.
dc.contributor.authorWhyte, Dennis G.
dc.contributor.authorWright, John C.
dc.contributor.authorWukitch, Stephen James
dc.date.accessioned2013-10-25T15:45:49Z
dc.date.available2013-10-25T15:45:49Z
dc.date.issued2012-06
dc.date.submitted2011-12
dc.identifier.issn1070664X
dc.identifier.issn1089-7674
dc.identifier.urihttp://hdl.handle.net/1721.1/81778
dc.description.abstractAssessing the performance of lower hybrid current drive (LHCD) at high density is critical for developing non-inductive current drive systems on future steady-state experiments. Excellent LHCD efficiency has been observed during fully non-inductive operation (η = 2.0 − 2.5 × 10[superscript 19] AW[superscript –1] m[superscript –2] at [¯ over n][subscript e] = 0.5 × 10[superscript 20] m[superscript –3]) on Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas1, 1511 (1994)] under conditions (n[subscript e], magnetic field and topology, and LHCD frequency) relevant to ITER [S. Shiraiwa et al., Nucl. Fusion 51, 103024 (2011)]. To extend these results to advanced tokamak regimes with higher bootstrap current fractions on C-Mod, it is necessary to increase [¯ over n][subscript e] to 1.0 − 1.5 × 10[superscript 20] m[superscript −3]. However, the number of current-carrying, non-thermal electrons generated by LHCD drops sharply in diverted configurations at densities that are well below the density limit previously observed on limited tokamaks. In these cases, changes in scrape off layer (SOL)ionization and density profiles are observed during LHCD, indicating that significant power is transferred from the LH waves to the SOL.Fokker-Planck simulations of these discharges utilizing ray tracing and full wave propagation codes indicate that LH waves in the high density, multi-pass absorption regime linger in the plasma edge, and SOL region, where absorption near or outside the LCFS results in the loss of current drive efficiency. Modeling predicts that non-thermal emission increases with stronger single-pass absorption. Experimental data show that increasing T[subscript e] in high density LH discharges results in higher non-thermal electron emission, as predicted by the models.en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Award DE-FC02-99ER54512)en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Award DE-AC02-09CH11466)en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4729734en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0en_US
dc.sourceMIT Web Domainen_US
dc.titleLower hybrid current drive at high density in the multi-pass regimeen_US
dc.typeArticleen_US
dc.identifier.citationWallace, G. M. et al. “Lower Hybrid Current Drive at High Density in the Multi-pass Regime.” Physics of Plasmas 19.6 (2012): 062505.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Centeren_US
dc.contributor.mitauthorWallace, Gregory Marrineren_US
dc.contributor.mitauthorFaust, Ian Charlesen_US
dc.contributor.mitauthorMeneghini, Orso-Maria Cornelioen_US
dc.contributor.mitauthorParker, Ronald R.en_US
dc.contributor.mitauthorShiraiwa, Shunichien_US
dc.contributor.mitauthorBaek, Seung Gyouen_US
dc.contributor.mitauthorBonoli, Paul T.en_US
dc.contributor.mitauthorHubbard, Amanda E.en_US
dc.contributor.mitauthorHughes, Jerry W.en_US
dc.contributor.mitauthorLabombard, Brianen_US
dc.contributor.mitauthorLau, C.en_US
dc.contributor.mitauthorMa, Y.en_US
dc.contributor.mitauthorReinke, Matthew Loganen_US
dc.contributor.mitauthorTerry, James L.en_US
dc.contributor.mitauthorWhyte, Dennis G.en_US
dc.contributor.mitauthorWright, John C.en_US
dc.contributor.mitauthorWukitch, Stephen Jamesen_US
dc.contributor.mitauthorSchmidt, A. E.en_US
dc.relation.journalPhysics of Plasmasen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWallace, G. M.; Faust, I. C.; Meneghini, O.; Parker, R. R.; Shiraiwa, S.; Baek, S. G.; Bonoli, P. T.; Hubbard, A. E.; Hughes, J. W.; LaBombard, B. L.; Lau, C.; Ma, Y.; Reinke, M. L.; Terry, J. L.; Whyte, D. G.; Wright, J. C.; Wukitch, S. J.; Harvey, R. W.; Schmidt, A. E.; Smirnov, A. P.; Wilson, J. R.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9001-5606
dc.identifier.orcidhttps://orcid.org/0000-0003-4432-5504
dc.identifier.orcidhttps://orcid.org/0000-0001-8029-3525
dc.identifier.orcidhttps://orcid.org/0000-0002-7841-9261
dc.identifier.orcidhttps://orcid.org/0000-0002-1620-9680
dc.identifier.orcidhttps://orcid.org/0000-0001-5049-2769
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record