Show simple item record

dc.contributor.authorAoude, Georges
dc.contributor.authorRoy, Nicholas
dc.contributor.authorHow, Jonathan P.
dc.contributor.authorLuders, Brandon Douglas
dc.contributor.authorJoseph, Joshua Mason
dc.date.accessioned2013-10-30T13:29:19Z
dc.date.available2013-10-30T13:29:19Z
dc.date.issued2013-05
dc.date.submitted2011-08
dc.identifier.issn0929-5593
dc.identifier.issn1573-7527
dc.identifier.urihttp://hdl.handle.net/1721.1/81864
dc.description.abstractThis paper presents a real-time path planning algorithm that guarantees probabilistic feasibility for autonomous robots with uncertain dynamics operating amidst one or more dynamic obstacles with uncertain motion patterns. Planning safe trajectories under such conditions requires both accurate prediction and proper integration of future obstacle behavior within the planner. Given that available observation data is limited, the motion model must provide generalizable predictions that satisfy dynamic and environmental constraints, a limitation of existing approaches. This work presents a novel solution, named RR-GP, which builds a learned motion pattern model by combining the flexibility of Gaussian processes (GP) with the efficiency of RRT-Reach, a sampling-based reachability computation. Obstacle trajectory GP predictions are conditioned on dynamically feasible paths identified from the reachability analysis, yielding more accurate predictions of future behavior. RR-GP predictions are integrated with a robust path planner, using chance-constrained RRT, to identify probabilistically feasible paths. Theoretical guarantees of probabilistic feasibility are shown for linear systems under Gaussian uncertainty; approximations for nonlinear dynamics and/or non-Gaussian uncertainty are also presented. Simulations demonstrate that, with this planner, an autonomous vehicle can safely navigate a complex environment in real-time while significantly reducing the risk of collisions with dynamic obstacles.en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10514-013-9334-3en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleProbabilistically safe motion planning to avoid dynamic obstacles with uncertain motion patternsen_US
dc.typeArticleen_US
dc.identifier.citationAoude, Georges S., Brandon D. Luders, Joshua M. Joseph, Nicholas Roy, and Jonathan P. How. “Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion patterns.” Autonomous Robots 35, no. 1 (July 3, 2013): 51-76.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorAoude, Georgesen_US
dc.contributor.mitauthorLuders, Brandon Douglasen_US
dc.contributor.mitauthorJoseph, Joshua Masonen_US
dc.contributor.mitauthorRoy, Nicholasen_US
dc.contributor.mitauthorHow, Jonathan P.en_US
dc.relation.journalAutonomous Robotsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsAoude, Georges S.; Luders, Brandon D.; Joseph, Joshua M.; Roy, Nicholas; How, Jonathan P.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8576-1930
dc.identifier.orcidhttps://orcid.org/0000-0002-8293-0492
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record