MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Load Balancing for Mobility-on-Demand Systems

Author(s)
Durrant-Whyte, H.; Roy, Nicholas; Abbeel, P.
Thumbnail
DownloadFrazzoli_Load balancing.pdf (541.0Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
In this paper we develop methods for maximizing the throughput of a mobility-on-demand urban transportation system. We consider a finite group of shared vehicles, located at a set of stations. Users arrive at the stations, pick-up vehicles, and drive (or are driven) to their destination station where they drop-off the vehicle. When some origins and destinations are more popular than others, the system will inevitably become out of balance: Vehicles will build up at some stations, and become depleted at others. We propose a robotic solution to this rebalancing problem that involves empty robotic vehicles autonomously driving between stations. We develop a rebalancing policy that minimizes the number of vehicles performing rebalancing trips. To do this, we utilize a fluid model for the customers and vehicles in the system. The model takes the form of a set of nonlinear time-delay differential equations. We then show that the optimal rebalancing policy can be found as the solution to a linear program. By analyzing the dynamical system model, we show that every station reaches an equilibrium in which there are excess vehicles and no waiting customers.We use this solution to develop a real-time rebalancing policy which can operate in highly variable environments. We verify policy performance in a simulated mobility-on-demand environment with stochastic features found in real-world urban transportation networks.
Date issued
2012
URI
http://hdl.handle.net/1721.1/81869
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Robotics: Science and Systems VII
Publisher
MIT Press
Citation
Durrant-Whyte, H., N. Roy, and P. Abbeel. "Load Balancing for Mobility-on-Demand Systems ." In Robotics: Science and Systems VII , Cambridge, MA: MIT Press, 2012. pp. 249 - 256.
Version: Author's final manuscript
Other identifiers
Paper-ID #184
ISBN
9780262305969

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.