MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Recognition of Sleep Dependent Memory Consolidation with Multi-modal Sensor Data

Author(s)
Sano, Akane; Picard, Rosalind W.
Thumbnail
DownloadPicard_Recognition of sleep.pdf (855.0Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
This paper presents the possibility of recognizing sleep dependent memory consolidation using multi-modal sensor data. We collected visual discrimination task (VDT) performance before and after sleep at laboratory, hospital and home for N=24 participants while recording EEG (electroencepharogram), EDA (electrodermal activity) and ACC (accelerometer) or actigraphy data during sleep. We extracted features and applied machine learning techniques (discriminant analysis, support vector machine and k-nearest neighbor) from the sleep data to classify whether the participants showed improvement in the memory task. Our results showed 60–70% accuracy in a binary classification of task performance using EDA or EDA+ACC features, which provided an improvement over the more traditional use of sleep stages (the percentages of slow wave sleep (SWS) in the 1st quarter and rapid eye movement (REM) in the 4th quarter of the night) to predict VDT improvement.
Date issued
2013-05
URI
http://hdl.handle.net/1721.1/81876
Department
Massachusetts Institute of Technology. Media Laboratory; Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Journal
Proceedings of the 2013 IEEE International Conference on Body Sensor Networks
Publisher
Institute of Electrical and Electronics Engineers
Citation
Sano, Akane, and Rosalind W. Picard. "Recognition of Sleep Dependent Memory Consolidation with Multi-modal Sensor Data." In 2013 IEEE International Conference on Body Sensor Networks (BSN), 6-9 May 2013, Cambridge, MA, USA.Pp. 1–4. IEEE.
Version: Author's final manuscript
ISBN
978-1-4799-0331-3
9781479903306

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.